Pash1986 commited on
Commit
8f835ef
·
verified ·
1 Parent(s): 57ce2d1

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +54 -0
  2. requirments.txt +3 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import gradio as gr
3
+
4
+ import asyncio
5
+ from pymongo import MongoClient
6
+ from langchain.vectorstores import MongoDBAtlasVectorSearch
7
+ from langchain.embeddings import OpenAIEmbeddings
8
+ from langchain.llms import OpenAI
9
+ from langchain.prompts import PromptTemplate
10
+ from langchain.chains import LLMChain
11
+ import json
12
+
13
+
14
+ ## Connect to MongoDB Atlas local cluster
15
+ MONGODB_ATLAS_CLUSTER_URI = os.getenv('MONGODB_ATLAS_CLUSTER_URI')
16
+ client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
17
+ db_name = 'sample_mflix'
18
+ collection_name = 'movies'
19
+ collection = client[db_name][collection_name]
20
+
21
+ ## Create a collection and insert data
22
+ print ('Creating collection movies')
23
+ client[db_name].create_collection(collection_name)
24
+
25
+ ## Create a vector search index
26
+ print ('Creating vector search index')
27
+ collection.create_search_index(model={"definition": {"mappings":{
28
+ "dynamic":True,
29
+ "fields": {
30
+ "plot_embedding": {
31
+ "type": "knnVector",
32
+ "dimensions": 1536,
33
+ "similarity": "euclidean"
34
+ }
35
+ }
36
+ }}, "name":'default'})
37
+
38
+ # sleep for minute
39
+ print ('Waiting for vector index on field "embedding" to be created')
40
+ time.sleep(60)
41
+
42
+ vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='default', text_key='plot', embedding_key='plot_embedding')
43
+
44
+ def get_movies(message, history):
45
+ movies = vector_store.similarity_search(message, 3)
46
+ for movie in movies:
47
+ for i in range(len(movie.metadata['title'])):
48
+ time.sleep(0.05)
49
+ yield "Movie " + i + " : Title - " + movie.metadata['title'][: i+1]
50
+
51
+ demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search", submit_btn="Search").queue()
52
+
53
+ if __name__ == "__main__":
54
+ demo.launch()
requirments.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pymongo
2
+ langchain
3
+ openai