import time import gradio as gr import os import asyncio from pymongo import MongoClient from langchain_community.vectorstores import MongoDBAtlasVectorSearch from langchain_openai import OpenAIEmbeddings from langchain_community.llms import OpenAI # from langchain_community.prompts import PromptTemplate # from langchain.chains import LLMChain import json ## Connect to MongoDB Atlas local cluster MONGODB_ATLAS_CLUSTER_URI = os.getenv('MONGODB_ATLAS_CLUSTER_URI') client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) db_name = 'sample_mflix' collection_name = 'embedded_movies' collection = client[db_name][collection_name] ## Create a vector search index print ('Creating vector search index') # collection.create_search_index(model={"definition": {"mappings":{ # "dynamic":True, # "fields": { # "plot_embedding": { # "type": "knnVector", # "dimensions": 1536, # "similarity": "euclidean" # } # } # }}, "name":'default'}) # sleep for minute # print ('Waiting for vector index on field "embedding" to be created') # time.sleep(60) vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding') def get_movies(message, history): # Use AsyncIO to run the similarity search in the background # movies = vector_store.similarity_search(message, 3) print ('Searching for: ' + message) movies = vector_store.similarity_search(message, 3) retrun_text = '' for movie in movies: retrun_text = retrun_text + 'Title : ' + movie.metadata['title'] + '\n------------\n' + 'Plot: ' + movie.page_content + '\n\n' for i in range(len(retrun_text)): time.sleep(0.05) yield "Found: " + "\n\n" + retrun_text[: i+1] demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search", submit_btn="Search").queue() if __name__ == "__main__": demo.launch()