File size: 3,945 Bytes
0703e71
210b40c
e303329
d232ed1
b5e9a85
d232ed1
0703e71
17a12ac
 
 
 
60ffe71
f833ec9
af1a93c
8d132dc
60ffe71
210b40c
 
 
 
 
090dd00
210b40c
 
 
090dd00
210b40c
 
 
090dd00
210b40c
 
 
 
 
 
f21f2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a73aede
f21f2ed
 
a73aede
f21f2ed
 
 
 
 
 
0a402b2
f21f2ed
0a402b2
0108e87
f21f2ed
 
60ffe71
9d86cbe
af1a93c
090dd00
bc3ac0f
af1a93c
bc3ac0f
af1a93c
 
d59c183
 
 
 
76c4bfe
 
bc3ac0f
af1a93c
 
bc3ac0f
d59c183
210b40c
 
d232ed1
9d86cbe
 
 
 
 
 
f21f2ed
 
 
d232ed1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces

HF_TOKEN = os.environ.get("HF_TOKEN", None)
if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

tokenizer = AutoTokenizer.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct", torch_dtype=torch.float16, device_map="auto").to(device)
model.gradient_checkpointing_enable()

PROMPT = """
Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.

--
QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
{question}

--
DOCUMENT:
{document}

--
ANSWER:
{answer}

--

Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
{{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
"""

HEADER = """
# Patronus Lynx Demo
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0"  width="450">
<tr style="height:50px;">
<td style="text-align: center;">
<a href="https://www.patronus.ai">
<img src="https://cdn.prod.website-files.com/64e655d42d3be60f582d0472/64ede352897bcddbe2d41207_patronusai_final_logo.svg" width="200" height="40" />
</a>
</td>
</tr>
</table>
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0"  width="450">
<tr style="height:30px;">
<td style="text-align: center;">
<a href="https://huggingface.co/PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange" height="20"></a>
</td>
<td style="text-align: center;">
<a href="https://github.com/patronus-ai/Lynx-hallucination-detection"><img src="https://postimage.me/images/2024/03/04/GitHub_Logo_White.png" width="100" height="20"></a>
</td>
<td style="text-align: center; color: white;">
<a href="https://arxiv.org/abs/2407.08488"><img src="https://img.shields.io/badge/arXiv-2407.08488-b31b1b.svg" height="20"></a>
</td>
</tr>
</table>

**Patronus Lynx** is a state-of-the-art open-source model for hallucination detection.

**Getting Started**: Provide a question and document or context given to your model in addition to the answer given by the model and then click submit. The output panel will indicate whether the reponse is a hallucination (Fail) or if it is faithful to the given document or context (Pass) through the score Pass or Fail and provide reasoning behind the score.
"""

@spaces.GPU()
def model_call(question, document, answer):
    device = next(model.parameters()).device
    NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
    print("ENTIRE NEW_FORMAT", NEW_FORMAT)
    inputs = tokenizer(NEW_FORMAT, return_tensors="pt").to(device)
    print("INPUTS", inputs)
    input_ids = inputs.input_ids
    attention_mask = inputs.attention_mask
    generate_kwargs = dict(
        input_ids=input_ids,
        do_sample=True,
        attention_mask=attention_mask,
        pad_token_id=tokenizer.eos_token_id,
    )
    print("GENERATE_KWARGS", generate_kwargs)
    with torch.no_grad():
        outputs = model.generate(**generate_kwargs)
    print("OUTPUTS", outputs)
    generated_text = tokenizer.decode(outputs[0])
    print(generated_text)
    return generated_text

inputs = [
    gr.Textbox(label="Question"),
    gr.Textbox(label="Document"),
    gr.Textbox(label="Answer")
]

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    gr.Interface(fn=model_call, inputs=inputs, outputs="text")
demo.launch()