Spaces:
Sleeping
Sleeping
File size: 1,910 Bytes
0703e71 210b40c e303329 d232ed1 b5e9a85 d232ed1 0703e71 60ffe71 f833ec9 60ffe71 210b40c 090dd00 210b40c 090dd00 210b40c 090dd00 210b40c 60ffe71 9d86cbe 090dd00 5724967 76c4bfe 210b40c d232ed1 9d86cbe d232ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
HF_TOKEN = os.environ.get("HF_TOKEN", None)
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct", torch_dtype=torch.float16, device_map="auto")
PROMPT = """
Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning.
--
QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION):
{question}
--
DOCUMENT:
{document}
--
ANSWER:
{answer}
--
Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE":
{{"REASONING": <your reasoning as bullet points>, "SCORE": <your final score>}}
"""
@spaces.GPU()
def model_call(question, document, answer):
NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
inputs = tokenizer(NEW_FORMAT, return_tensors="pt").to(device)
model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
)
generated_text = tokenizer.decode(inputs.input_ids[0])
print(generated_text)
return generated_text
inputs = [
gr.Textbox(label="Question"),
gr.Textbox(label="Document"),
gr.Textbox(label="Answer")
]
demo = gr.Interface(fn=model_call, inputs=inputs, outputs="text")
demo.launch()
|