Spaces:
Sleeping
Sleeping
Remove .to(device) calls
Browse files
app.py
CHANGED
@@ -5,13 +5,13 @@ import gradio as gr
|
|
5 |
import spaces
|
6 |
|
7 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
8 |
-
if torch.cuda.is_available():
|
9 |
-
|
10 |
-
else:
|
11 |
-
|
12 |
|
13 |
tokenizer = AutoTokenizer.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct")
|
14 |
-
model = AutoModelForCausalLM.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct", torch_dtype=torch.float16, device_map="auto")
|
15 |
model.gradient_checkpointing_enable()
|
16 |
|
17 |
# def load_model_and_tokenizer(model_choice):
|
@@ -79,10 +79,10 @@ HEADER = """
|
|
79 |
@spaces.GPU()
|
80 |
# def model_call(question, document, answer, tokenizer, model):
|
81 |
def model_call(question, document, answer):
|
82 |
-
device = next(model.parameters()).device
|
83 |
NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
|
84 |
print("ENTIRE NEW_FORMAT", NEW_FORMAT)
|
85 |
-
inputs = tokenizer(NEW_FORMAT, return_tensors="pt")
|
86 |
print("INPUTS", inputs)
|
87 |
input_ids = inputs.input_ids
|
88 |
attention_mask = inputs.attention_mask
|
|
|
5 |
import spaces
|
6 |
|
7 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
8 |
+
# if torch.cuda.is_available():
|
9 |
+
# device = "cuda:0"
|
10 |
+
# else:
|
11 |
+
# device = "cpu"
|
12 |
|
13 |
tokenizer = AutoTokenizer.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct")
|
14 |
+
model = AutoModelForCausalLM.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct", torch_dtype=torch.float16, device_map="auto")
|
15 |
model.gradient_checkpointing_enable()
|
16 |
|
17 |
# def load_model_and_tokenizer(model_choice):
|
|
|
79 |
@spaces.GPU()
|
80 |
# def model_call(question, document, answer, tokenizer, model):
|
81 |
def model_call(question, document, answer):
|
82 |
+
# device = next(model.parameters()).device
|
83 |
NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer)
|
84 |
print("ENTIRE NEW_FORMAT", NEW_FORMAT)
|
85 |
+
inputs = tokenizer(NEW_FORMAT, return_tensors="pt")
|
86 |
print("INPUTS", inputs)
|
87 |
input_ids = inputs.input_ids
|
88 |
attention_mask = inputs.attention_mask
|