import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import spaces HF_TOKEN = os.environ.get("HF_TOKEN", None) if torch.cuda.is_available(): device = "cuda:0" else: device = "cpu" tokenizer = AutoTokenizer.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct") model = AutoModelForCausalLM.from_pretrained("PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct", torch_dtype=torch.float16, device_map="auto").to(device) model.gradient_checkpointing_enable() PROMPT = """ Given the following QUESTION, DOCUMENT and ANSWER you must analyze the provided answer and determine whether it is faithful to the contents of the DOCUMENT. The ANSWER must not offer new information beyond the context provided in the DOCUMENT. The ANSWER also must not contradict information provided in the DOCUMENT. Output your final verdict by strictly following this format: "PASS" if the answer is faithful to the DOCUMENT and "FAIL" if the answer is not faithful to the DOCUMENT. Show your reasoning. -- QUESTION (THIS DOES NOT COUNT AS BACKGROUND INFORMATION): {question} -- DOCUMENT: {document} -- ANSWER: {answer} -- Your output should be in JSON FORMAT with the keys "REASONING" and "SCORE": {{"REASONING": , "SCORE": }} """ HEADER = """ # Patronus Lynx Demo
**Patronus Lynx** is a state-of-the-art open-source model for hallucination detection. """ @spaces.GPU() def model_call(question, document, answer): device = next(model.parameters()).device NEW_FORMAT = PROMPT.format(question=question, document=document, answer=answer) inputs = tokenizer(NEW_FORMAT, return_tensors="pt").to(device) input_ids = inputs.input_ids attention_mask = inputs.attention_mask generate_kwargs = dict( input_ids=input_ids, do_sample=True, attention_mask=attention_mask, pad_token_id=tokenizer.eos_token_id, ) with torch.no_grad(): outputs = model.generate(**generate_kwargs) generated_text = tokenizer.decode(outputs[0]) print(generated_text) return generated_text inputs = [ gr.Textbox(label="Question"), gr.Textbox(label="Document"), gr.Textbox(label="Answer") ] with gr.Blocks() as demo: gr.Markdown(HEADER) gr.Interface(fn=model_call, inputs=inputs, outputs="text") demo.launch()