File size: 2,289 Bytes
1e1d5ae
 
5a45b9a
1e1d5ae
 
 
 
 
 
5a45b9a
 
 
 
 
1e1d5ae
 
5a45b9a
 
 
 
 
 
 
 
 
 
1e1d5ae
5a45b9a
 
 
 
 
1e1d5ae
5a45b9a
1e1d5ae
5a45b9a
1e1d5ae
5a45b9a
 
 
 
 
 
 
 
 
 
 
1e1d5ae
 
 
 
 
5a45b9a
 
1e1d5ae
5a45b9a
1e1d5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a45b9a
1e1d5ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

class Assistant:
    def __init__(self, model_name="ContactDoctor/Bio-Medical-Llama-3-8B"):
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.model = AutoModelForCausalLM.from_pretrained(model_name)
            self.pipe = pipeline("text-generation", model="ContactDoctor/Bio-Medical-Llama-3-8B")


    def respond(
        self,
        message,
        history: list[tuple[str, str]],
        system_message,
        max_tokens,
        temperature,
        top_p,
    ):
        messages = [{"role": "system", "content": system_message}]

        for val in history:
            if val[0]:
                messages.append({"role": "user", "content": val[0]})
            if val[1]:
                messages.append({"role": "assistant", "content": val[1]})

        messages.append({"role": "user", "content": message})

        response = ""

        for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = message.choices[0].delta.content

            response += token
            yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
assistant = Assistant()

demo = gr.ChatInterface(
    assistant.respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    # Assistant()
    demo.launch()