MediMate / app.py
Paulie-Aditya's picture
hopefully no mle this time
002e0f5
raw
history blame
2.17 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
class Assistant:
def __init__(self):
model_name = "ruslanmv/Medical-Llama3-8B"
device_map = 'auto'
# bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.float16,)
# self.model = AutoModelForCausalLM.from_pretrained( model_name,quantization_config=bnb_config, trust_remote_code=True,use_cache=False,device_map=device_map)
self.model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True,use_cache=False,device_map=device_map)
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self.tokenizer.pad_token = self.tokenizer.eos_token
def respond(
self,
message
):
sys_message = '''
You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and
provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.
'''
messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": message}]
# Applying chat template
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = self.tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = self.model.generate(**inputs, max_new_tokens=100, use_cache=True)
# Extract and return the generated text, removing the prompt
response_text = self.tokenizer.batch_decode(outputs)[0].strip()
answer = response_text.split('<|im_start|>assistant')[-1].strip()
return answer
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
assistant = Assistant()
demo = gr.ChatInterface(
assistant.respond
)
if __name__ == "__main__":
demo.launch()