Spaces:
Runtime error
Runtime error
import os | |
import textwrap | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
import torch | |
#from tabulate import tabulate | |
import time | |
model_bi_encoder = "msmarco-distilbert-base-tas-b" | |
model_cross_encoder = "cross-encoder/ms-marco-MiniLM-L-12-v2" | |
bi_encoder = SentenceTransformer(model_bi_encoder) | |
bi_encoder.max_seq_length = 512 | |
cross_encoder = CrossEncoder(model_cross_encoder) | |
top_k = 20 | |
def get_corpus(passages): | |
if "corpus.pt" not in os.listdir(os.getcwd()): | |
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True) | |
torch.save(corpus_embeddings, "corpus.pt") | |
else: | |
corpus_embeddings = torch.load("corpus.pt") | |
return corpus_embeddings | |
def search(query, passages): | |
corpus_embeddings = get_corpus(passages) | |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True) | |
be = time.process_time() | |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) | |
#print("Time taken by Bi-encoder:" + str(time.process_time() - be)) | |
hits = hits[0] | |
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits] | |
ce = time.process_time() | |
cross_scores = cross_encoder.predict(cross_inp) | |
#print("Time taken by Cross-encoder:" + str(time.process_time() - ce)) | |
# Sort results by the cross-encoder scores | |
for idx in range(len(cross_scores)): | |
hits[idx]['cross-score'] = cross_scores[idx] | |
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) | |
result_table = list() | |
for hit in hits[0:5]: | |
ans = "{}".format(passages[hit['corpus_id']].replace("\n", " ")) | |
#print(ans) | |
cs = "{}".format(hit['cross-score']) | |
#print(cs) | |
sc = "{}".format(hit['score']) | |
#print(sc) | |
wrapper = textwrap.TextWrapper(width=50) | |
ans = wrapper.fill(text=ans) | |
result_table.append([ans,str(cs),str(sc)]) | |
return result_table | |
#print(tabulate(result_table, headers=["Answer", "Cross-encoder score", "Bi-encoder score"], tablefmt="fancy_grid", maxcolwidths=[None, None, None])) | |