Spaces:
Sleeping
Sleeping
from langchain.agents import initialize_agent, Tool | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.agents import AgentType | |
from langchain.tools import BaseTool | |
from langchain.llms import OpenAI | |
from langchain import SerpAPIWrapper, LLMChain | |
from langchain.chains import RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.agents import ZeroShotAgent, Tool, AgentExecutor | |
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory | |
from langchain.document_loaders import TextLoader, DirectoryLoader | |
from langchain.vectorstores import Chroma | |
import os | |
import arxiv | |
import chainlit as cl | |
from chainlit import user_session | |
async def init(): | |
# Set the OpenAI Embeddings model | |
embeddings = embeddings = OpenAIEmbeddings() | |
# Set the persist directory | |
persist_directory = "vector_db" | |
# Load the persisted Chroma vector store | |
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) | |
# Create a chain that uses the Chroma vector store | |
alice_qa = RetrievalQA.from_chain_type( | |
ChatOpenAI( | |
model_name="gpt-3.5-turbo-16k", | |
temperature=0, | |
), | |
chain_type="stuff", | |
retriever=vectordb.as_retriever(), | |
) | |
search = SerpAPIWrapper() | |
memory = ConversationBufferMemory(memory_key="chat_history") | |
readonlymemory = ReadOnlySharedMemory(memory=memory) | |
tools = [ | |
Tool( | |
name = "Alice in Wonderland QA System", | |
func=alice_qa.run, | |
description="useful for when you need to answer questions about Alice in Wonderland. Input should be a fully formed question." | |
), | |
Tool( | |
name = "Backup Alice Google Search", | |
func=search.run, | |
description="useful for when you need to answer questions about Alice in Wonderland but only when the Alice in Wonderland QA System couldn't answer the query. Input should be a fully formed question." | |
), | |
] | |
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" | |
suffix = """Begin!" | |
{chat_history} | |
Question: {input} | |
{agent_scratchpad}""" | |
prompt = ZeroShotAgent.create_prompt( | |
tools, | |
prefix=prefix, | |
suffix=suffix, | |
input_variables=["input", "chat_history", "agent_scratchpad"] | |
) | |
llm_chain = LLMChain( | |
llm=ChatOpenAI( | |
model_name="gpt-3.5-turbo-16k", | |
temperature=0, | |
), | |
prompt=prompt | |
) | |
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) | |
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory) | |
# Let the user know that the system is ready | |
await cl.Message( | |
content=f"You can begin by asking any questions about Alice in Wonderland!" | |
).send() | |
return agent_chain | |
async def run(agent, input_str): | |
res = await cl.make_async(agent)(input_str, callbacks=[cl.LangchainCallbackHandler()]) | |
print(res) | |
await cl.Message(content=res["output"]).send() | |
def rename(original_llm_chain: str): | |
rename_dict = { | |
"LLMChain" : "The Mad Hatter 🤪🎩" | |
} | |
return rename_dict.get(original_llm_chain, original_llm_chain) |