Spaces:
Runtime error
Runtime error
# Import necessary libraries | |
import os | |
import textwrap | |
import pandas as pd | |
from langchain import HuggingFaceHub | |
from langchain.document_loaders import TextLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.chains.question_answering import load_qa_chain | |
from transformers import AutoTokenizer | |
def wrap_text_preserve_newlines(text, width=110): | |
lines = text.split('\n') | |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines] | |
wrapped_text = '\n'.join(wrapped_lines) | |
return wrapped_text | |
def split_into_chunks(text, tokenizer, max_tokens=500): | |
tokens = tokenizer.encode(text, return_tensors="pt").squeeze() | |
token_chunks = [] | |
current_chunk = [] | |
current_chunk_len = 0 | |
for token in tokens: | |
token_len = len(tokenizer.decode(token.item())) | |
if current_chunk_len + token_len + 1 > max_tokens: | |
token_chunks.append(tokenizer.decode(current_chunk)) | |
current_chunk = [] | |
current_chunk_len = 0 | |
current_chunk.append(token.item()) | |
current_chunk_len += token_len + 1 | |
if current_chunk: | |
token_chunks.append(tokenizer.decode(current_chunk)) | |
return token_chunks | |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl") | |
class TextDocument: | |
def __init__(self, content, id, metadata=None): | |
self.page_content = content | |
self.metadata = metadata if metadata is not None else {} | |
self.metadata['id'] = id | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" | |
data_frame = pd.read_csv("dataset.tsv", sep="\t", nrows=1000) | |
data = data_frame.to_dict(orient="records") | |
documents = [TextDocument(content=str(item["answer"]), id=item["id"]) for item in data] | |
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0) | |
docs = text_splitter.split_documents(documents) | |
embeddings = HuggingFaceEmbeddings() | |
db = FAISS.from_documents(docs, embeddings) | |
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.75, "max_length": 2048}) | |
chain = load_qa_chain(llm, chain_type="refine") | |
def truncate_answer(answer, question, tokenizer, max_total_tokens=1000): | |
special_tokens = 2 | |
question_tokens = len(tokenizer.encode(question, return_tensors="pt").squeeze()) | |
max_answer_tokens = max_total_tokens - question_tokens - special_tokens | |
answer_tokens = tokenizer.encode(answer, return_tensors="pt").squeeze() | |
truncated_answer = tokenizer.decode(answer_tokens[:max_answer_tokens]) | |
return truncated_answer | |
def combined_length_exceeds_limit(question, answer, tokenizer, model_token_limit=1024): | |
special_tokens = 2 | |
question_tokens = len(tokenizer.encode(question, return_tensors="pt").squeeze()) | |
answer_tokens = len(tokenizer.encode(answer, return_tensors="pt").squeeze()) | |
return question_tokens + answer_tokens > (model_token_limit - special_tokens) | |
def process_question(query): | |
answers = [] | |
docs = db.similarity_search(query) | |
most_similar_doc = docs[0] | |
print(f"Most similar answer: \n{wrap_text_preserve_newlines(str(most_similar_doc.page_content))}\n") | |
query_chunks = split_into_chunks(query, tokenizer, max_tokens=500) | |
for query_chunk in query_chunks: | |
if combined_length_exceeds_limit(query_chunk, str(docs[0].page_content), tokenizer): | |
print("The combined length of the question and answer exceeds the model's token limit.") | |
else: | |
truncated_answer = truncate_answer(str(docs[0].page_content), query_chunk, tokenizer, max_total_tokens=500) | |
result = chain.run(input_documents=[TextDocument(content=truncated_answer, id=docs[0].metadata['id'])], question=query_chunk) | |
answers.append(result) | |
return answers | |