PhantHive's picture
Update app.py
0d61c55 verified
import gradio as gr
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
# Device configuration (prioritize GPU if available)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "Phearion/bigbrain-v0.0.1"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load models and tokenizer efficiently
config = PeftConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config)
# Load the Lora model
model = PeftModel.from_pretrained(model, model_id)
def greet(text):
with torch.no_grad():
# Include EOS token for better context
input_text = f"<s>### User:\n{text}\n\n### Assistant:\n"
batch = tokenizer(input_text, return_tensors='pt', add_special_tokens=True).to(device)
with torch.cuda.amp.autocast():
output_tokens = model.generate(
**batch,
max_new_tokens=25, # Limit response length
do_sample=True, # Sample from the distribution
pad_token_id=tokenizer.eos_token_id, # Stop at EOS
)
# Decode only the generated tokens
response = tokenizer.decode(output_tokens[0][len(batch['input_ids'][0]):], skip_special_tokens=True)
# Additional stopping condition at next "### Response:"
response_parts = response.split("### Assistant:")
return response_parts[0] # Return only the first part
iface = gr.Interface(fn=greet, inputs="text", outputs="text"
, title="PEFT Model for Big Brain")
iface.launch() # Share directly to Gradio Space