Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,6 @@ model = PeftModel.from_pretrained(model, "phearion/bigbrain-v0.0.1")
|
|
13 |
# Move the model to the device
|
14 |
model = model.to(device)
|
15 |
|
16 |
-
# Convert the model to TorchScript
|
17 |
-
scripted_model = torch.jit.script(model)
|
18 |
|
19 |
# Load the tokenizer
|
20 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
@@ -23,12 +21,10 @@ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
23 |
|
24 |
def greet(text):
|
25 |
batch = tokenizer(f"'{text}' ->: ", return_tensors='pt')
|
26 |
-
|
27 |
-
batch = {k: v.to(device) for k, v in batch.items()}
|
28 |
-
|
29 |
# Use torch.no_grad to disable gradient calculation
|
30 |
with torch.no_grad():
|
31 |
-
output_tokens =
|
32 |
|
33 |
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
34 |
|
|
|
13 |
# Move the model to the device
|
14 |
model = model.to(device)
|
15 |
|
|
|
|
|
16 |
|
17 |
# Load the tokenizer
|
18 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
|
|
21 |
|
22 |
def greet(text):
|
23 |
batch = tokenizer(f"'{text}' ->: ", return_tensors='pt')
|
24 |
+
|
|
|
|
|
25 |
# Use torch.no_grad to disable gradient calculation
|
26 |
with torch.no_grad():
|
27 |
+
output_tokens = model.generate(**batch, max_new_tokens=20)
|
28 |
|
29 |
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
30 |
|