PhantHive commited on
Commit
1fdbfe6
1 Parent(s): d037b1c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -6
app.py CHANGED
@@ -13,8 +13,6 @@ model = PeftModel.from_pretrained(model, "phearion/bigbrain-v0.0.1")
13
  # Move the model to the device
14
  model = model.to(device)
15
 
16
- # Convert the model to TorchScript
17
- scripted_model = torch.jit.script(model)
18
 
19
  # Load the tokenizer
20
  tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
@@ -23,12 +21,10 @@ tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
23
 
24
  def greet(text):
25
  batch = tokenizer(f"'{text}' ->: ", return_tensors='pt')
26
- # Move the batch to the device
27
- batch = {k: v.to(device) for k, v in batch.items()}
28
-
29
  # Use torch.no_grad to disable gradient calculation
30
  with torch.no_grad():
31
- output_tokens = scripted_model.generate(**batch, max_new_tokens=20)
32
 
33
  return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
34
 
 
13
  # Move the model to the device
14
  model = model.to(device)
15
 
 
 
16
 
17
  # Load the tokenizer
18
  tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
 
21
 
22
  def greet(text):
23
  batch = tokenizer(f"'{text}' ->: ", return_tensors='pt')
24
+
 
 
25
  # Use torch.no_grad to disable gradient calculation
26
  with torch.no_grad():
27
+ output_tokens = model.generate(**batch, max_new_tokens=20)
28
 
29
  return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
30