Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from peft import PeftModel, PeftConfig
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
import
|
5 |
-
torch
|
6 |
|
7 |
# Device configuration (prioritize GPU if available)
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -10,10 +9,14 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
10 |
# Load models and tokenizer efficiently
|
11 |
config = PeftConfig.from_pretrained("phearion/bigbrain-v0.0.1")
|
12 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
13 |
-
model =
|
|
|
|
|
|
|
14 |
model.to(device)
|
15 |
|
16 |
-
def greet(text
|
|
|
17 |
with torch.no_grad(): # Disable gradient calculation for inference
|
18 |
batch = tokenizer(text, return_tensors='pt').to(device) # Move tensors to device
|
19 |
with torch.cuda.amp.autocast(): # Enable mixed-precision if available
|
|
|
1 |
import gradio as gr
|
2 |
from peft import PeftModel, PeftConfig
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
|
|
5 |
|
6 |
# Device configuration (prioritize GPU if available)
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
9 |
# Load models and tokenizer efficiently
|
10 |
config = PeftConfig.from_pretrained("phearion/bigbrain-v0.0.1")
|
11 |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
|
13 |
+
|
14 |
+
# Load the Lora model
|
15 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
16 |
model.to(device)
|
17 |
|
18 |
+
def greet(text
|
19 |
+
):
|
20 |
with torch.no_grad(): # Disable gradient calculation for inference
|
21 |
batch = tokenizer(text, return_tensors='pt').to(device) # Move tensors to device
|
22 |
with torch.cuda.amp.autocast(): # Enable mixed-precision if available
|