Update app.py
Browse files
app.py
CHANGED
@@ -4,22 +4,22 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
import torch
|
5 |
|
6 |
# Load the model and config when the script starts
|
7 |
-
|
8 |
-
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(
|
10 |
-
|
11 |
-
|
12 |
-
# Load the tokenizer
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
14 |
|
|
|
|
|
15 |
|
16 |
|
17 |
def greet(text):
|
18 |
-
batch = tokenizer(f"
|
19 |
|
20 |
# Use torch.no_grad to disable gradient calculation
|
21 |
with torch.no_grad():
|
22 |
-
output_tokens = model.generate(**batch, do_sample=True, max_new_tokens=15
|
|
|
23 |
|
24 |
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
25 |
|
|
|
4 |
import torch
|
5 |
|
6 |
# Load the model and config when the script starts
|
7 |
+
peft_model_id = "phearion/bigbrain-v0.0.1"
|
8 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
|
|
|
|
|
|
11 |
|
12 |
+
# Load the Lora model
|
13 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
14 |
|
15 |
|
16 |
def greet(text):
|
17 |
+
batch = tokenizer(f"\"{text}\" ->: ", return_tensors='pt')
|
18 |
|
19 |
# Use torch.no_grad to disable gradient calculation
|
20 |
with torch.no_grad():
|
21 |
+
output_tokens = model.generate(**batch, do_sample=True, max_new_tokens=15
|
22 |
+
)
|
23 |
|
24 |
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
25 |
|