import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and config when the script starts config = PeftConfig.from_pretrained("phearion/bigbrain-v0.0.1") model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") model = PeftModel.from_pretrained(model, "phearion/bigbrain-v0.0.1") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") def greet(text): batch = tokenizer(f"'{text}' ->: ", return_tensors='pt') # Use torch.no_grad to disable gradient calculation with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=20) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()