import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Device configuration (prioritize GPU if available) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "phearion/bigbrain-v0.0.1" # Load models and tokenizer efficiently config = PeftConfig.from_pretrained("phearion/bigbrain-v0.0.1") tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, model_id) model.to(device) def greet(text): with torch.no_grad(): # Disable gradient calculation for inference batch = tokenizer(text, return_tensors='pt').to(device) # Move tensors to device with torch.cuda.amp.autocast(): # Enable mixed-precision if available output_tokens = model.generate(**batch, max_new_tokens=15) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="PEFT Model for Big Brain", live=True) iface.launch(share=True) # Share directly to Gradio Space