import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch # Device configuration (prioritize GPU if available) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "phearion/bigbrain-v0.0.1" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) # Load models and tokenizer efficiently config = PeftConfig.from_pretrained("phearion/bigbrain-v0.0.1") tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config) # Load the Lora model model = PeftModel.from_pretrained(model, model_id) def greet(text): with torch.no_grad(): # Disable gradient calculation for inference batch = tokenizer(f'"{text}" ->:', return_tensors='pt') # Move tensors to device with torch.cuda.amp.autocast(): # Enable mixed-precision if available output_tokens = model.generate(**batch , max_new_tokens=15) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) iface = gr.Interface(fn=greet, inputs="text", outputs="text", title="PEFT Model for Big Brain") iface.launch() # Share directly to Gradio Space