import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and config when the script starts peft_model_id = "phearion/bigbrain-v0.0.1" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def greet(text): batch = tokenizer(f"\"{text}\" ->: ", return_tensors='pt') # Use torch.no_grad to disable gradient calculation with torch.no_grad(): output_tokens = model.generate(**batch, do_sample=True, max_new_tokens=15 ) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()