import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and config when the script starts config = PeftConfig.from_pretrained("Phearion/bigbrain-v0.0.1") model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1") model = PeftModel.from_pretrained(model, "Phearion/bigbrain-v0.0.1") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") def greet(text): batch = tokenizer(f"'{text}' ->: ", return_tensors='pt') # Use torch.no_grad to disable gradient calculation with torch.no_grad(): output_tokens = model.generate(**batch, do_sample=True, max_new_tokens=20) return tokenizer.decode (output_tokens[0], skip_special_tokens=True) iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()