import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch # Device configuration (prioritize GPU if available) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "Phearion/bigbrain-v0.0.1" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) # Load models and tokenizer efficiently config = PeftConfig.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config) # Load the Lora model model = PeftModel.from_pretrained(model, model_id) def greet(text): with torch.no_grad(): # Include EOS token for better context input_text = f"### User:\n{text}\n\n### Assistant:\n" batch = tokenizer(input_text, return_tensors='pt', add_special_tokens=True).to(device) with torch.cuda.amp.autocast(): output_tokens = model.generate( **batch, max_new_tokens=25, # Limit response length do_sample=True, # Sample from the distribution pad_token_id=tokenizer.eos_token_id, # Stop at EOS ) # Decode only the generated tokens response = tokenizer.decode(output_tokens[0][len(batch['input_ids'][0]):], skip_special_tokens=True) # Additional stopping condition at next "### Response:" response_parts = response.split("### Assistant:") return response_parts[0] # Return only the first part iface = gr.Interface(fn=greet, inputs="text", outputs="text" , title="PEFT Model for Big Brain") iface.launch() # Share directly to Gradio Space