Spaces:
Build error
Build error
File size: 4,917 Bytes
9941f21 a4fd448 9941f21 a4fd448 9941f21 54e0381 c11ea8c 3cf6a6c ab66a38 a4fd448 3cf6a6c 54e0381 a4fd448 54e0381 a4fd448 54e0381 a4fd448 54e0381 a4fd448 54e0381 a4fd448 54e0381 3cf6a6c a4fd448 3cf6a6c ab66a38 3cf6a6c ab66a38 a4fd448 bf108da a4fd448 82f7ab5 bf108da a4fd448 ab66a38 a4fd448 1f54c5f bf108da 02ec812 1006e6b e7252da bf108da 6d4fd39 a4fd448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import sys
import torch
import gradio as gr
import pickle
from easydict import EasyDict as edict
from huggingface_hub import hf_hub_download
sys.path.append("./rome/")
sys.path.append('./DECA')
from rome.infer import Infer
from rome.src.utils.processing import process_black_shape, tensor2image
# loading models ---- create model repo
default_modnet_path = hf_hub_download('Pie31415/rome', 'modnet_photographic_portrait_matting.ckpt')
default_model_path = hf_hub_download('Pie31415/rome', 'rome.pth')
# parser configurations
args = edict({
"save_dir": ".",
"save_render": True,
"model_checkpoint": default_model_path,
"modnet_path": default_modnet_path,
"random_seed": 0,
"debug": False,
"verbose": False,
"model_image_size": 256,
"align_source": True,
"align_target": False,
"align_scale": 1.25,
"use_mesh_deformations": False,
"subdivide_mesh": False,
"renderer_sigma": 1e-08,
"renderer_zfar": 100.0,
"renderer_type": "soft_mesh",
"renderer_texture_type": "texture_uv",
"renderer_normalized_alphas": False,
"deca_path": "DECA",
"rome_data_dir": "rome/data",
"autoenc_cat_alphas": False,
"autoenc_align_inputs": False,
"autoenc_use_warp": False,
"autoenc_num_channels": 64,
"autoenc_max_channels": 512,
"autoenc_num_groups": 4,
"autoenc_num_bottleneck_groups": 0,
"autoenc_num_blocks": 2,
"autoenc_num_layers": 4,
"autoenc_block_type": "bottleneck",
"neural_texture_channels": 8,
"num_harmonic_encoding_funcs": 6,
"unet_num_channels": 64,
"unet_max_channels": 512,
"unet_num_groups": 4,
"unet_num_blocks": 1,
"unet_num_layers": 2,
"unet_block_type": "conv",
"unet_skip_connection_type": "cat",
"unet_use_normals_cond": True,
"unet_use_vertex_cond": False,
"unet_use_uvs_cond": False,
"unet_pred_mask": False,
"use_separate_seg_unet": True,
"norm_layer_type": "gn",
"activation_type": "relu",
"conv_layer_type": "ws_conv",
"deform_norm_layer_type": "gn",
"deform_activation_type": "relu",
"deform_conv_layer_type": "ws_conv",
"unet_seg_weight": 0.0,
"unet_seg_type": "bce_with_logits",
"deform_face_tightness": 0.0001,
"use_whole_segmentation": False,
"mask_hair_for_neck": False,
"use_hair_from_avatar": False,
"use_scalp_deforms": True,
"use_neck_deforms": True,
"use_basis_deformer": False,
"use_unet_deformer": True,
"pretrained_encoder_basis_path": "",
"pretrained_vertex_basis_path": "",
"num_basis": 50,
"basis_init": "pca",
"num_vertex": 5023,
"train_basis": True,
"path_to_deca": "DECA",
"path_to_linear_hair_model": "data/linear_hair.pth", # N/A
"path_to_mobile_model": "data/disp_model.pth", # N/A
"n_scalp": 60,
"use_distill": False,
"use_mobile_version": False,
"deformer_path": "data/rome.pth",
"output_unet_deformer_feats": 32,
"use_deca_details": False,
"use_flametex": False,
"upsample_type": "nearest",
"num_frequencies": 6,
"deform_face_scale_coef": 0.0,
"device": "cpu"
})
# download FLAME and DECA pretrained
generic_model_path = hf_hub_download('Pie31415/rome', 'generic_model.pkl')
deca_model_path = hf_hub_download('Pie31415/rome', 'deca_model.tar')
with open(generic_model_path, 'rb') as f:
ss = pickle.load(f, encoding='latin1')
with open('./DECA/data/generic_model.pkl', 'wb') as out:
pickle.dump(ss, out)
with open(deca_model_path, "rb") as input:
with open('./DECA/data/deca_model.tar', "wb") as out:
for line in input:
out.write(line)
# load ROME inference model
infer = Infer(args)
def image_inference(
source_img: gr.inputs.Image = None,
driver_img: gr.inputs.Image = None
):
out = infer.evaluate(source_img, driver_img, crop_center=False)
res = tensor2image(torch.cat([out['source_information']['data_dict']['source_img'][0].cpu(),
out['source_information']['data_dict']['target_img'][0].cpu(),
out['render_masked'].cpu(), out['pred_target_shape_img'][0].cpu()], dim=2))
return res[..., ::-1]
def video_inference():
pass
with gr.Blocks() as demo:
gr.Markdown("# **<p align='center'>ROME: Realistic one-shot mesh-based head avatars</p>**")
with gr.Tab("Image Inference"):
with gr.Row():
source_img = gr.Image(type="pil")
driver_img = gr.Image(type="pil")
image_output = gr.Image()
image_button = gr.Button("Predict")
with gr.Tab("Video Inference"):
video_inputs = [gr.Video(), gr.Image()]
pass
gr.Examples(
examples=[["./examples/lincoln.jpg", "./examples/taras2.jpg"]],
inputs=[source_img, driver_img]
)
image_button.click(image_inference, inputs=[source_img, driver_img], outputs=image_output)
demo.launch() |