Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio.inputs import Textbox
|
3 |
-
|
4 |
import nltk
|
5 |
nltk.download('punkt')
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
-
|
8 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
9 |
from datasets import load_dataset
|
10 |
import torch
|
11 |
import random
|
12 |
import string
|
13 |
import soundfile as sf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
16 |
# load the processor
|
17 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
18 |
# load the model
|
@@ -21,7 +28,7 @@ model = SpeechT5ForTextToSpeech.from_pretrained(
|
|
21 |
# load the vocoder, that is the voice encoder
|
22 |
vocoder = SpeechT5HifiGan.from_pretrained(
|
23 |
"microsoft/speecht5_hifigan").to(device)
|
24 |
-
#
|
25 |
embeddings_dataset = load_dataset(
|
26 |
"Matthijs/cmu-arctic-xvectors", split="validation")
|
27 |
|
@@ -38,18 +45,21 @@ speakers = {
|
|
38 |
|
39 |
def generateAudio(text_to_audio, s3_save_as):
|
40 |
|
41 |
-
def
|
42 |
-
|
|
|
|
|
|
|
43 |
if len(tokens) <= max_tokens:
|
44 |
-
return
|
45 |
|
46 |
-
|
47 |
-
return
|
48 |
|
49 |
|
50 |
def save_text_to_speech(text, speaker=None):
|
51 |
# Preprocess text and recortar
|
52 |
-
text =
|
53 |
# preprocess text
|
54 |
inputs = processor(text=text, return_tensors="pt").to(device)
|
55 |
if speaker is not None:
|
@@ -70,16 +80,33 @@ def generateAudio(text_to_audio, s3_save_as):
|
|
70 |
random_str = ''.join(random.sample(
|
71 |
string.ascii_letters+string.digits, k=5))
|
72 |
output_filename = f"{random_str}-{'-'.join(text.split()[:6])}.mp3"
|
73 |
-
# save the generated speech to a file with 16KHz sampling rate
|
74 |
-
sf.write(output_filename, speech.cpu().numpy(), samplerate=16000)
|
75 |
-
# return the filename for reference
|
76 |
-
return output_filename
|
77 |
|
|
|
|
|
|
|
|
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
output_filename = save_text_to_speech(text_to_audio, 2271)
|
81 |
-
|
82 |
-
return f"Saved {output_filename}"
|
83 |
|
84 |
-
iface = gr.Interface(
|
85 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from gradio.inputs import Textbox
|
|
|
3 |
import nltk
|
4 |
nltk.download('punkt')
|
5 |
from nltk.tokenize import word_tokenize
|
6 |
+
import re
|
7 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
8 |
from datasets import load_dataset
|
9 |
import torch
|
10 |
import random
|
11 |
import string
|
12 |
import soundfile as sf
|
13 |
+
import boto3
|
14 |
+
from io import BytesIO
|
15 |
+
import os
|
16 |
+
|
17 |
+
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
18 |
+
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
19 |
+
S3_BUCKET_NAME = os.getenv("BUCKET_NAME")
|
20 |
|
21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
|
23 |
# load the processor
|
24 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
25 |
# load the model
|
|
|
28 |
# load the vocoder, that is the voice encoder
|
29 |
vocoder = SpeechT5HifiGan.from_pretrained(
|
30 |
"microsoft/speecht5_hifigan").to(device)
|
31 |
+
# load the dataset to get the speaker embeddings
|
32 |
embeddings_dataset = load_dataset(
|
33 |
"Matthijs/cmu-arctic-xvectors", split="validation")
|
34 |
|
|
|
45 |
|
46 |
def generateAudio(text_to_audio, s3_save_as):
|
47 |
|
48 |
+
def cut_text(text, max_tokens=500):
|
49 |
+
# Remove non-alphanumeric characters, except periods and commas
|
50 |
+
text = re.sub(r"[^\w\s.,]", "", text)
|
51 |
+
|
52 |
+
tokens = word_tokenize(text_to_audio)
|
53 |
if len(tokens) <= max_tokens:
|
54 |
+
return text
|
55 |
|
56 |
+
cut = ' '.join(tokens[:max_tokens])
|
57 |
+
return cut
|
58 |
|
59 |
|
60 |
def save_text_to_speech(text, speaker=None):
|
61 |
# Preprocess text and recortar
|
62 |
+
text = cut_text(text, max_tokens=500)
|
63 |
# preprocess text
|
64 |
inputs = processor(text=text, return_tensors="pt").to(device)
|
65 |
if speaker is not None:
|
|
|
80 |
random_str = ''.join(random.sample(
|
81 |
string.ascii_letters+string.digits, k=5))
|
82 |
output_filename = f"{random_str}-{'-'.join(text.split()[:6])}.mp3"
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
# Save the generated speech to BytesIO buffer
|
85 |
+
audio_buffer = BytesIO()
|
86 |
+
sf.write(audio_buffer, speech.cpu().numpy(), samplerate=16000)
|
87 |
+
audio_buffer.seek(0)
|
88 |
|
89 |
+
# Upload the audio buffer to S3
|
90 |
+
s3_key = f"{s3_save_as}.mp3"
|
91 |
+
s3 = boto3.client(
|
92 |
+
's3',
|
93 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
94 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
95 |
+
)
|
96 |
+
s3.upload_fileobj(audio_buffer, S3_BUCKET_NAME, s3_key)
|
97 |
+
|
98 |
+
# Return the S3 URL of the uploaded audio file
|
99 |
+
s3_url = f"https://{S3_BUCKET_NAME}.s3.amazonaws.com/{s3_key}"
|
100 |
+
return s3_url
|
101 |
+
|
102 |
+
|
103 |
+
s3_url = save_text_to_speech(text_to_audio, speakers["clb"])
|
104 |
+
return f"Saved audio: {s3_url}"
|
105 |
|
|
|
|
|
|
|
106 |
|
107 |
+
iface = gr.Interface(
|
108 |
+
fn=generateAudio,
|
109 |
+
inputs=[Textbox(label="Text to Audio"), Textbox(label="S3 Save As")],
|
110 |
+
outputs="text"
|
111 |
+
)
|
112 |
+
iface.launch()
|