Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,83 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from gradio.inputs import Textbox
|
3 |
|
4 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
5 |
+
from datasets import load_dataset
|
6 |
+
import torch
|
7 |
+
import random
|
8 |
+
import string
|
9 |
+
import soundfile as sf
|
10 |
+
import nltk
|
11 |
+
from nltk.tokenize import word_tokenize
|
12 |
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
# load the processor
|
15 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
+
# load the model
|
17 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(
|
18 |
+
"microsoft/speecht5_tts").to(device)
|
19 |
+
# load the vocoder, that is the voice encoder
|
20 |
+
vocoder = SpeechT5HifiGan.from_pretrained(
|
21 |
+
"microsoft/speecht5_hifigan").to(device)
|
22 |
+
# we load this dataset to get the speaker embeddings
|
23 |
+
embeddings_dataset = load_dataset(
|
24 |
+
"Matthijs/cmu-arctic-xvectors", split="validation")
|
25 |
+
|
26 |
+
# speaker ids from the embeddings dataset
|
27 |
+
speakers = {
|
28 |
+
'awb': 0, # Scottish male
|
29 |
+
'bdl': 1138, # US male
|
30 |
+
'clb': 2271, # US female
|
31 |
+
'jmk': 3403, # Canadian male
|
32 |
+
'ksp': 4535, # Indian male
|
33 |
+
'rms': 5667, # US male
|
34 |
+
'slt': 6799 # US female
|
35 |
+
}
|
36 |
+
|
37 |
+
def generateAudio(text_to_audio, s3_save_as):
|
38 |
+
|
39 |
+
def recortar_texto(texto, max_tokens=500):
|
40 |
+
tokens = word_tokenize(texto)
|
41 |
+
if len(tokens) <= max_tokens:
|
42 |
+
return texto
|
43 |
+
|
44 |
+
recortado = ' '.join(tokens[:max_tokens])
|
45 |
+
return recortado
|
46 |
+
|
47 |
+
|
48 |
+
def save_text_to_speech(text, speaker=None):
|
49 |
+
# Preprocess text and recortar
|
50 |
+
text = recortar_texto(text, max_tokens=500)
|
51 |
+
# preprocess text
|
52 |
+
inputs = processor(text=text, return_tensors="pt").to(device)
|
53 |
+
if speaker is not None:
|
54 |
+
# load xvector containing speaker's voice characteristics from a dataset
|
55 |
+
speaker_embeddings = torch.tensor(
|
56 |
+
embeddings_dataset[speaker]["xvector"]).unsqueeze(0).to(device)
|
57 |
+
else:
|
58 |
+
# random vector, meaning a random voice
|
59 |
+
speaker_embeddings = torch.randn((1, 512)).to(device)
|
60 |
+
# generate speech with the models
|
61 |
+
speech = model.generate_speech(
|
62 |
+
inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
63 |
+
if speaker is not None:
|
64 |
+
# if we have a speaker, we use the speaker's ID in the filename
|
65 |
+
output_filename = f"{speaker}-{'-'.join(text.split()[:6])}.mp3"
|
66 |
+
else:
|
67 |
+
# if we don't have a speaker, we use a random string in the filename
|
68 |
+
random_str = ''.join(random.sample(
|
69 |
+
string.ascii_letters+string.digits, k=5))
|
70 |
+
output_filename = f"{random_str}-{'-'.join(text.split()[:6])}.mp3"
|
71 |
+
# save the generated speech to a file with 16KHz sampling rate
|
72 |
+
sf.write(output_filename, speech.cpu().numpy(), samplerate=16000)
|
73 |
+
# return the filename for reference
|
74 |
+
return output_filename
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
output_filename = save_text_to_speech(text_to_audio, 2271)
|
79 |
+
|
80 |
+
return f"Saved {output_filename}"
|
81 |
+
|
82 |
+
iface = gr.Interface(fn=text_to_image, inputs=[Textbox(label="text_to_audio"), Textbox(label="s3_save_as")], outputs="text")
|
83 |
iface.launch()
|