Spaces:
Paused
Paused
File size: 3,647 Bytes
7703dd9 9dbb565 7703dd9 9dbb565 7703dd9 4603c75 7703dd9 9dbb565 7703dd9 9dbb565 7703dd9 9dbb565 7703dd9 4603c75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
from gradio.inputs import Textbox
import torch
from diffusers import StableDiffusionPipeline
import boto3
from io import BytesIO
import os
import botocore
from time import sleep
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
S3_BUCKET_NAME = 'pineblogs101145-dev'
model_id = "CompVis/stable-diffusion-v1-4"
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = StableDiffusionPipeline.from_pretrained(
model_id, torch_dtype=torch.float32)
pipe = pipe.to(device)
s3 = boto3.resource('s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
s3_client = boto3.client('s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
bucket_name = 'pineblogs101145-dev'
folder = 'public/mdx/'
def text_to_image(prompt, save_as, key_id):
if AWS_ACCESS_KEY_ID != key_id:
return "not permition"
# Create an instance of the S3 client
s3 = boto3.client('s3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
image_name = '-'.join(save_as.split()) + ".webp"
def save_image_to_s3(image):
# Create a BytesIO object to store the image.
image_buffer = BytesIO()
image.save(image_buffer, format='WEBP')
image_buffer.seek(0)
# Full path of the file in the bucket
s3_key = "public/" + image_name
print('Saving image to s3')
# Upload the image to the S3 bucket
s3.upload_fileobj(image_buffer, S3_BUCKET_NAME, s3_key)
print('Image saved to s3')
def generator_image(prompt):
prompt = prompt
print('Starting to generate the image ...')
try:
image = pipe(prompt).images[0]
except Exception as e:
print('Error: ', e)
print('Image generation completed')
# Save the image in S3
save_image_to_s3(image)
generator_image(prompt)
return image_name
def check_if_exist(bucket_name, key):
try:
s3.Object(bucket_name, key).load()
except botocore.exceptions.ClientError as e:
if e.response['Error']['Code'] == "404":
# The object does not exist.
return False
else:
# Something else has gone wrong.
raise
else:
return True
def list_s3_files(bucket_name, folder):
my_bucket = s3.Bucket(bucket_name)
for objects in my_bucket.objects.filter(Prefix=folder):
print(objects.key)
filename_ext = '%s' % os.path.basename(objects.key)
filename = os.path.splitext(filename_ext)[0]
s3image = 'public/%s.webp' % filename
if check_if_exist(bucket_name, s3image):
print('Image %s already exists!' % s3image)
else:
response = s3_client.head_object(Bucket=bucket_name, Key=objects.key)
metadata = response['Metadata']
print(metadata)
if 'resumen' in metadata:
print('Has resume, ready to create image!')
print('Start creating image.. %s ' % s3image)
resumen = metadata['resumen']
else:
print('There is NOT resume, skipping..')
sleep(500/1000)
text_to_image(resumen, filename, AWS_ACCESS_KEY_ID)
list_s3_files(bucket_name, folder)
iface = gr.Interface(fn=list_s3_files, inputs=[Textbox(label="bucket_name"), Textbox(label="folder")], outputs="text")
iface.launch()
|