File size: 7,914 Bytes
be82a8a 4971496 e0d2fc3 4bd3834 be82a8a 4971496 be82a8a cdfe590 e0d2fc3 cdfe590 e0d2fc3 4bd3834 e0d2fc3 4971496 0dc9ae7 4bd3834 e0d2fc3 0dc9ae7 4bd3834 0dc9ae7 e0d2fc3 4971496 0dc9ae7 e0d2fc3 cdfe590 e0d2fc3 87b137c be82a8a e0d2fc3 4971496 cdfe590 4971496 cdfe590 50a5b93 4971496 e0d2fc3 4971496 cdfe590 4971496 50a5b93 cdfe590 e0d2fc3 cdfe590 4971496 4bd3834 4971496 be82a8a 4bd3834 e0d2fc3 cdfe590 0dc9ae7 4bd3834 00f746f 4bd3834 e0d2fc3 4bd3834 e0d2fc3 4ea5d8d e0d2fc3 4ea5d8d 4bd3834 e0d2fc3 4bd3834 e0d2fc3 cdfe590 e0d2fc3 00f746f cdfe590 4bd3834 e0d2fc3 00f746f 4bd3834 00f746f e0d2fc3 cdfe590 4bd3834 e0d2fc3 4bd3834 e0d2fc3 cdfe590 be82a8a 4bd3834 87b137c 4bd3834 a6f10c7 0dc9ae7 a6f10c7 e0d2fc3 4bd3834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import gradio as gr
from huggingface_hub import InferenceClient
from typing import Iterator
import requests
from bs4 import BeautifulSoup
from urllib.parse import quote_plus
def search_web(query: str, num_results: int = 3) -> list[str]:
"""
Search the web and return text from the first n results.
Using DuckDuckGo.
"""
try:
# Encode the search query
encoded_query = quote_plus(query)
# Make request to DuckDuckGo
url = f"https://html.duckduckgo.com/html/?q={encoded_query}"
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
}
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
# Extract results
results = []
for result in soup.find_all('div', class_='result')[:num_results]:
title = result.find('a', class_='result__a')
snippet = result.find('a', class_='result__snippet')
if title and snippet:
results.append(f"Title: {title.text.strip()}\nExcerpt: {snippet.text.strip()}\n")
return results
except Exception as e:
return [f"Search error: {str(e)}"]
client = InferenceClient("Pinkstack/Superthoughts-lite-v1")
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
enable_search: bool,
) -> Iterator[str]:
messages = [{"role": "system", "content": system_message}]
# If search is enabled, get search results and add to context
search_context = ""
if enable_search:
search_results = search_web(message)
if search_results:
search_context = "Search results:\n" + "\n".join(search_results) + "\n\nBased on these results, "
# Add history to messages
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message with search context if enabled
full_message = search_context + message if search_context else message
messages.append({"role": "user", "content": full_message})
# Initialize response
response = ""
# Stream the response
try:
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if chunk.choices[0].delta.content is not None:
token = chunk.choices[0].delta.content
response += token
yield format_response(response)
except Exception as e:
yield f"Error: {str(e)}"
def format_response(response: str) -> str:
"""Format the response with collapsible thinking sections"""
response = response.replace("<think>", '<details open><summary>Show thinking 🧠</summary><div class="thoughts">')
response = response.replace("</think>", "</div></details>")
return response
# Custom CSS for styling
css = """
.thoughts {
border: 1px solid #ccc;
padding: 10px;
background-color: #000000;
color: #ffffff;
border-radius: 5px;
margin: 5px 0;
}
details summary {
cursor: pointer;
padding: 5px;
background-color: #000000;
color: #ffffff;
border-radius: 5px;
font-weight: bold;
margin: 5px 0;
}
details summary::-webkit-details-marker {
display: none;
}
details summary:after {
content: " ▶";
}
details[open] summary:after {
content: " ▼";
}
/* ChatGPT-like UI */
.gradio-container {
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
}
.chat-container {
max-width: 800px;
margin: auto;
}
.chat-message {
padding: 10px;
border-radius: 8px;
margin-bottom: 10px;
}
.user-message {
background-color: #f0f0f0;
text-align: right;
}
.bot-message {
background-color: #ffffff;
text-align: left;
}
.message-text {
white-space: pre-wrap;
}
.button-container {
display: flex;
justify-content: flex-end;
gap: 10px; /* Space between buttons */
margin-top: 5px;
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("# Chat with Superthoughts lite! (1.7B)")
gr.Markdown("**Warning:** The first output from the AI may take a few moments. After the first message, it should work at a decent speed, keep in mind that this chat is only meant for testing and experimenting.")
chatbot = gr.Chatbot(height=600)
with gr.Row():
msg = gr.Textbox(
label="Your message",
placeholder="Type your message here...",
scale=7,
container=False
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
stop_btn = gr.Button("Stop", variant="stop", scale=1)
with gr.Accordion("Advanced Settings", open=False):
enable_search = gr.Checkbox(
label="Enable web search [Beta]",
value=False,
info="When enabled, the AI will search the web for relevant information before responding, powered by duckduckgo."
)
system_message = gr.Textbox(
value="You must act in a conversational matter and always include at the start <think> ... </think> <output> ... </output> tokens.",
label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.6,
step=0.1,
label="Temperature/Creativeness"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
)
def user(user_message: str, history: list) -> tuple[str, list]:
"""Add user message to history"""
return "", history + [[user_message, None]]
def bot(
history: list,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
enable_search: bool
) -> Iterator[list]:
"""Generate and stream bot responses"""
user_message, _ = history[-1]
history[-1][1] = "" # Initialize bot's response
for partial_response in respond(
user_message,
history[:-1],
system_message,
max_tokens,
temperature,
top_p,
enable_search
):
history[-1][1] = partial_response
yield history
submit_event = msg.submit(
user,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, system_message, max_tokens, temperature, top_p, enable_search],
chatbot
)
submit_click_event = submit_btn.click(
user,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, system_message, max_tokens, temperature, top_p, enable_search],
chatbot
)
stop_btn.click(None, [], [], cancels=[submit_event, submit_click_event])
# Add a clear button
clear = gr.Button("Clear Conversation")
clear.click(lambda: None, None, chatbot, queue=False)
# Add disclaimer
gr.Markdown(
"""
---
⚠️ **Disclaimer:** Superthoughts may make mistakes. Always verify important information.
This chat interface is intended for testing and experimentation purposes only.
"""
)
if __name__ == "__main__":
demo.queue()
demo.launch() |