File size: 5,210 Bytes
be82a8a 4971496 e0d2fc3 be82a8a 4971496 be82a8a cdfe590 e0d2fc3 cdfe590 e0d2fc3 4971496 e0d2fc3 4971496 e0d2fc3 4971496 e0d2fc3 cdfe590 e0d2fc3 a6f10c7 be82a8a e0d2fc3 4971496 cdfe590 4971496 cdfe590 50a5b93 4971496 e0d2fc3 4971496 cdfe590 4971496 50a5b93 cdfe590 e0d2fc3 cdfe590 4971496 be82a8a e0d2fc3 cdfe590 a6f10c7 e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 e0d2fc3 cdfe590 be82a8a a6f10c7 e0d2fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
from huggingface_hub import InferenceClient
from typing import Iterator
client = InferenceClient("Pinkstack/Superthoughts-lite-v1")
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
) -> Iterator[str]:
messages = [{"role": "system", "content": system_message}]
# Add history to messages
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Initialize response
response = ""
# Stream the response
try:
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
if chunk.choices[0].delta.content is not None:
token = chunk.choices[0].delta.content
response += token
yield format_response(response)
except Exception as e:
yield f"Error: {str(e)}"
def format_response(response: str) -> str:
"""Format the response with collapsible thinking sections that maintain state"""
import re
import hashlib
def get_section_id(content):
# Create a unique ID for each thinking section based on its content
return hashlib.md5(content.encode()).hexdigest()[:8]
# Find all thinking sections and replace them with uniquely identified sections
pattern = r"<think>(.*?)</think>"
sections = re.findall(pattern, response, re.DOTALL)
formatted = response
for section in sections:
section_id = get_section_id(section)
old = f"<think>{section}</think>"
new = f'<details id="think_{section_id}" open><summary>Show thinking 🧠</summary><div class="thoughts">{section}</div></details>'
formatted = formatted.replace(old, new)
return formatted
# Custom CSS for styling
css = """
.thoughts {
border: 1px solid #ccc;
padding: 10px;
background-color: #000000;
color: #ffffff;
border-radius: 5px;
margin: 5px 0;
}
details summary {
cursor: pointer;
padding: 5px;
background-color: #000000;
color: #ffffff;
border-radius: 5px;
font-weight: bold;
margin: 5px 0;
}
details summary::-webkit-details-marker {
display: none;
}
details summary:after {
content: " ▶";
}
details[open] summary:after {
content: " ▼";
}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("## Chat with Superthoughts lite! (1.7B)")
gr.Markdown("**Note:** First response may take a moment to initialize. Subsequent responses will be faster.")
chatbot = gr.Chatbot(height=600)
msg = gr.Textbox(label="Your message", placeholder="Type your message here...")
with gr.Accordion("Advanced Settings", open=False):
system_message = gr.Textbox(
value="You must act in a conversational matter and always include <think> ... </think> <output> </output> tokens.",
label="System message"
)
max_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
)
def user(user_message: str, history: list) -> tuple[str, list]:
"""Add user message to history"""
return "", history + [[user_message, None]]
def bot(history: list, system_message: str, max_tokens: int, temperature: float, top_p: float) -> Iterator[list]:
"""Generate and stream bot responses"""
user_message, _ = history[-1]
history[-1][1] = "" # Initialize bot's response
for partial_response in respond(user_message, history[:-1], system_message, max_tokens, temperature, top_p):
history[-1][1] = partial_response
yield history
# Set up chat message handling
msg.submit(
user,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, system_message, max_tokens, temperature, top_p],
chatbot
)
with gr.Row():
clear = gr.Button("Clear Conversation")
stop = gr.Button("Stop Generation")
# Add disclaimer
gr.Markdown(
"""
---
⚠️ **Disclaimer:** Superthoughts may make mistakes. Always verify important information.
This chat interface is intended for testing and experimentation purposes only.
"""
)
# Launch the interface
if __name__ == "__main__":
demo.queue()
demo.launch(share=True) |