import gradio as gr from huggingface_hub import InferenceClient from typing import Iterator client = InferenceClient("Pinkstack/Superthoughts-lite-v1") def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ) -> Iterator[str]: messages = [{"role": "system", "content": system_message}] # Add history to messages for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Add current message messages.append({"role": "user", "content": message}) # Initialize response response = "" # Stream the response try: for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if chunk.choices[0].delta.content is not None: token = chunk.choices[0].delta.content response += token yield format_response(response) except Exception as e: yield f"Error: {str(e)}" def format_response(response: str) -> str: """Format the response with collapsible thinking sections that maintain state""" import re import hashlib def get_section_id(content): # Create a unique ID for each thinking section based on its content return hashlib.md5(content.encode()).hexdigest()[:8] # Find all thinking sections and replace them with uniquely identified sections pattern = r"(.*?)" sections = re.findall(pattern, response, re.DOTALL) formatted = response for section in sections: section_id = get_section_id(section) old = f"{section}" new = f'
Show thinking 🧠
{section}
' formatted = formatted.replace(old, new) return formatted # Custom CSS for styling css = """ .thoughts { border: 1px solid #ccc; padding: 10px; background-color: #000000; color: #ffffff; border-radius: 5px; margin: 5px 0; } details summary { cursor: pointer; padding: 5px; background-color: #000000; color: #ffffff; border-radius: 5px; font-weight: bold; margin: 5px 0; } details summary::-webkit-details-marker { display: none; } details summary:after { content: " ▶"; } details[open] summary:after { content: " ▼"; } """ # Create Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown("## Chat with Superthoughts lite! (1.7B)") gr.Markdown("**Note:** First response may take a moment to initialize. Subsequent responses will be faster.") chatbot = gr.Chatbot(height=600) msg = gr.Textbox(label="Your message", placeholder="Type your message here...") with gr.Accordion("Advanced Settings", open=False): system_message = gr.Textbox( value="You must act in a conversational matter and always include ... tokens.", label="System message" ) max_tokens = gr.Slider( minimum=1, maximum=4096, value=512, step=1, label="Max new tokens" ) temperature = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ) def user(user_message: str, history: list) -> tuple[str, list]: """Add user message to history""" return "", history + [[user_message, None]] def bot(history: list, system_message: str, max_tokens: int, temperature: float, top_p: float) -> Iterator[list]: """Generate and stream bot responses""" user_message, _ = history[-1] history[-1][1] = "" # Initialize bot's response for partial_response in respond(user_message, history[:-1], system_message, max_tokens, temperature, top_p): history[-1][1] = partial_response yield history # Set up chat message handling msg.submit( user, [msg, chatbot], [msg, chatbot], queue=False ).then( bot, [chatbot, system_message, max_tokens, temperature, top_p], chatbot ) with gr.Row(): clear = gr.Button("Clear Conversation") stop = gr.Button("Stop Generation") # Add disclaimer gr.Markdown( """ --- ⚠️ **Disclaimer:** Superthoughts may make mistakes. Always verify important information. This chat interface is intended for testing and experimentation purposes only. """ ) # Launch the interface if __name__ == "__main__": demo.queue() demo.launch(share=True)