File size: 3,591 Bytes
a4d0945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright    2023                             (authors: Feiteng Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import torch
import torch.nn as nn


class TokenEmbedding(nn.Module):
    def __init__(

        self,

        dim_model: int,

        vocab_size: int,

        dropout: float = 0.0,

    ):
        super().__init__()

        self.vocab_size = vocab_size
        self.dim_model = dim_model

        self.dropout = torch.nn.Dropout(p=dropout)
        self.word_embeddings = nn.Embedding(self.vocab_size, self.dim_model)

    @property
    def weight(self) -> torch.Tensor:
        return self.word_embeddings.weight

    def embedding(self, index: int) -> torch.Tensor:
        return self.word_embeddings.weight[index : index + 1]

    def forward(self, x: torch.Tensor):
        X = self.word_embeddings(x)
        X = self.dropout(X)

        return X


class SinePositionalEmbedding(nn.Module):
    def __init__(

        self,

        dim_model: int,

        dropout: float = 0.0,

        scale: bool = False,

        alpha: bool = False,

    ):
        super().__init__()
        self.dim_model = dim_model
        self.x_scale = math.sqrt(dim_model) if scale else 1.0
        self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
        self.dropout = torch.nn.Dropout(p=dropout)

        self.reverse = False
        self.pe = None
        self.extend_pe(torch.tensor(0.0).expand(1, 4000))

    def extend_pe(self, x):
        """Reset the positional encodings."""
        if self.pe is not None:
            if self.pe.size(1) >= x.size(1):
                if self.pe.dtype != x.dtype or self.pe.device != x.device:
                    self.pe = self.pe.to(dtype=x.dtype, device=x.device)
                return
        pe = torch.zeros(x.size(1), self.dim_model)
        if self.reverse:
            position = torch.arange(
                x.size(1) - 1, -1, -1.0, dtype=torch.float32
            ).unsqueeze(1)
        else:
            position = torch.arange(
                0, x.size(1), dtype=torch.float32
            ).unsqueeze(1)
        div_term = torch.exp(
            torch.arange(0, self.dim_model, 2, dtype=torch.float32)
            * -(math.log(10000.0) / self.dim_model)
        )
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.pe = pe.to(device=x.device, dtype=x.dtype).detach()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        self.extend_pe(x)
        output = x.unsqueeze(-1) if x.ndim == 2 else x
        output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
        return self.dropout(output)

    def infer(self, x, position_ids):
        """

        infer only a single or a few tokens to save time

        """
        output = x.unsqueeze(-1) if x.ndim == 2 else x
        output = output * self.x_scale + self.alpha * self.pe[:, position_ids]
        return self.dropout(output)