Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,315 Bytes
a50ee15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import torch
import torch.nn.functional as F
from torchaudio.transforms import MelSpectrogram
def adversarial_g_loss(y_disc_gen):
"""Hinge loss"""
loss = 0.0
for i in range(len(y_disc_gen)):
stft_loss = F.relu(1 - y_disc_gen[i]).mean().squeeze()
loss += stft_loss
return loss / len(y_disc_gen)
def feature_loss(fmap_r, fmap_gen):
loss = 0.0
for i in range(len(fmap_r)):
for j in range(len(fmap_r[i])):
stft_loss = ((fmap_r[i][j] - fmap_gen[i][j]).abs() /
(fmap_r[i][j].abs().mean())).mean()
loss += stft_loss
return loss / (len(fmap_r) * len(fmap_r[0]))
def sim_loss(y_disc_r, y_disc_gen):
loss = 0.0
for i in range(len(y_disc_r)):
loss += F.mse_loss(y_disc_r[i], y_disc_gen[i])
return loss / len(y_disc_r)
# def sisnr_loss(x, s, eps=1e-8):
# """
# calculate training loss
# input:
# x: separated signal, N x S tensor, estimate value
# s: reference signal, N x S tensor, True value
# Return:
# sisnr: N tensor
# """
# if x.shape != s.shape:
# if x.shape[-1] > s.shape[-1]:
# x = x[:, :s.shape[-1]]
# else:
# s = s[:, :x.shape[-1]]
# def l2norm(mat, keepdim=False):
# return torch.norm(mat, dim=-1, keepdim=keepdim)
# if x.shape != s.shape:
# raise RuntimeError(
# "Dimention mismatch when calculate si-snr, {} vs {}".format(
# x.shape, s.shape))
# x_zm = x - torch.mean(x, dim=-1, keepdim=True)
# s_zm = s - torch.mean(s, dim=-1, keepdim=True)
# t = torch.sum(
# x_zm * s_zm, dim=-1,
# keepdim=True) * s_zm / (l2norm(s_zm, keepdim=True)**2 + eps)
# loss = -20. * torch.log10(eps + l2norm(t) / (l2norm(x_zm - t) + eps))
# return torch.sum(loss) / x.shape[0]
LAMBDA_WAV = 100
LAMBDA_ADV = 1
LAMBDA_REC = 1
LAMBDA_COM = 1000
LAMBDA_FEAT = 1
discriminator_iter_start = 500
def reconstruction_loss(x, G_x, eps=1e-7):
# NOTE (lsx): hard-coded now
L = LAMBDA_WAV * F.mse_loss(x, G_x) # wav L1 loss
# loss_sisnr = sisnr_loss(G_x, x) #
# L += 0.01*loss_sisnr
# 2^6=64 -> 2^10=1024
# NOTE (lsx): add 2^11
for i in range(6, 12):
# for i in range(5, 12): # Encodec setting
s = 2**i
melspec = MelSpectrogram(
sample_rate=16000,
n_fft=max(s, 512),
win_length=s,
hop_length=s // 4,
n_mels=64,
wkwargs={"device": G_x.device}).to(G_x.device)
S_x = melspec(x)
S_G_x = melspec(G_x)
l1_loss = (S_x - S_G_x).abs().mean()
l2_loss = (((torch.log(S_x.abs() + eps) - torch.log(S_G_x.abs() + eps))**2).mean(dim=-2)**0.5).mean()
alpha = (s / 2) ** 0.5
L += (l1_loss + alpha * l2_loss)
return L
def criterion_d(y_disc_r, y_disc_gen, fmap_r_det, fmap_gen_det, y_df_hat_r,
y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r, y_ds_hat_g,
fmap_s_r, fmap_s_g):
"""Hinge Loss"""
loss = 0.0
loss1 = 0.0
loss2 = 0.0
loss3 = 0.0
for i in range(len(y_disc_r)):
loss1 += F.relu(1 - y_disc_r[i]).mean() + F.relu(1 + y_disc_gen[
i]).mean()
for i in range(len(y_df_hat_r)):
loss2 += F.relu(1 - y_df_hat_r[i]).mean() + F.relu(1 + y_df_hat_g[
i]).mean()
for i in range(len(y_ds_hat_r)):
loss3 += F.relu(1 - y_ds_hat_r[i]).mean() + F.relu(1 + y_ds_hat_g[
i]).mean()
loss = (loss1 / len(y_disc_gen) + loss2 / len(y_df_hat_r) + loss3 /
len(y_ds_hat_r)) / 3.0
return loss
def criterion_g(commit_loss, x, G_x, fmap_r, fmap_gen, y_disc_r, y_disc_gen,
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r,
y_ds_hat_g, fmap_s_r, fmap_s_g, args):
adv_g_loss = adversarial_g_loss(y_disc_gen)
feat_loss = (feature_loss(fmap_r, fmap_gen) + sim_loss(
y_disc_r, y_disc_gen) + feature_loss(fmap_f_r, fmap_f_g) + sim_loss(
y_df_hat_r, y_df_hat_g) + feature_loss(fmap_s_r, fmap_s_g) +
sim_loss(y_ds_hat_r, y_ds_hat_g)) / 3.0
rec_loss = reconstruction_loss(x.contiguous(), G_x.contiguous(), args)
total_loss = args.LAMBDA_COM * commit_loss + args.LAMBDA_ADV * adv_g_loss + args.LAMBDA_FEAT * feat_loss + args.LAMBDA_REC * rec_loss
return total_loss, adv_g_loss, feat_loss, rec_loss
def adopt_weight(weight, global_step, threshold=0, value=0.):
if global_step < threshold:
weight = value
return weight
def adopt_dis_weight(weight, global_step, threshold=0, value=0.):
# 0,3,6,9,13....这些时间步,不更新dis
if global_step % 3 == 0:
weight = value
return weight
def calculate_adaptive_weight(nll_loss, g_loss, last_layer, args):
if last_layer is not None:
nll_grads = torch.autograd.grad(
nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
else:
print('last_layer cannot be none')
assert 1 == 2
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 1.0, 1.0).detach()
d_weight = d_weight * args.LAMBDA_ADV
return d_weight
def loss_g(codebook_loss,
inputs,
reconstructions,
fmap_r,
fmap_gen,
y_disc_r,
y_disc_gen,
global_step,
y_df_hat_r,
y_df_hat_g,
y_ds_hat_r,
y_ds_hat_g,
fmap_f_r,
fmap_f_g,
fmap_s_r,
fmap_s_g,
last_layer=None,
is_training=True,
args=None):
"""
args:
codebook_loss: commit loss.
inputs: ground-truth wav.
reconstructions: reconstructed wav.
fmap_r: real stft-D feature map.
fmap_gen: fake stft-D feature map.
y_disc_r: real stft-D logits.
y_disc_gen: fake stft-D logits.
global_step: global training step.
y_df_hat_r: real MPD logits.
y_df_hat_g: fake MPD logits.
y_ds_hat_r: real MSD logits.
y_ds_hat_g: fake MSD logits.
fmap_f_r: real MPD feature map.
fmap_f_g: fake MPD feature map.
fmap_s_r: real MSD feature map.
fmap_s_g: fake MSD feature map.
"""
rec_loss = reconstruction_loss(inputs.contiguous(),
reconstructions.contiguous())
adv_g_loss = adversarial_g_loss(y_disc_gen)
adv_mpd_loss = adversarial_g_loss(y_df_hat_g)
adv_msd_loss = adversarial_g_loss(y_ds_hat_g)
adv_loss = (adv_g_loss + adv_mpd_loss + adv_msd_loss
) / 3.0 # NOTE(lsx): need to divide by 3?
feat_loss = feature_loss(
fmap_r,
fmap_gen) #+ sim_loss(y_disc_r, y_disc_gen) # NOTE(lsx): need logits?
feat_loss_mpd = feature_loss(fmap_f_r,
fmap_f_g) #+ sim_loss(y_df_hat_r, y_df_hat_g)
feat_loss_msd = feature_loss(fmap_s_r,
fmap_s_g) #+ sim_loss(y_ds_hat_r, y_ds_hat_g)
feat_loss_tot = (feat_loss + feat_loss_mpd + feat_loss_msd) / 3.0
d_weight = torch.tensor(1.0)
# try:
# d_weight = calculate_adaptive_weight(rec_loss, adv_g_loss, last_layer, args) # 动态调整重构损失和对抗损失
# except RuntimeError:
# assert not is_training
# d_weight = torch.tensor(0.0)
disc_factor = adopt_weight(
LAMBDA_ADV, global_step, threshold=discriminator_iter_start)
if disc_factor == 0.:
fm_loss_wt = 0
else:
fm_loss_wt = LAMBDA_FEAT
#feat_factor = adopt_weight(args.LAMBDA_FEAT, global_step, threshold=args.discriminator_iter_start)
loss = rec_loss + d_weight * disc_factor * adv_loss + \
fm_loss_wt * feat_loss_tot + LAMBDA_COM * codebook_loss.mean()
return loss, rec_loss, adv_loss, feat_loss_tot, d_weight
def loss_dis(y_disc_r_det, y_disc_gen_det, fmap_r_det, fmap_gen_det, y_df_hat_r,
y_df_hat_g, fmap_f_r, fmap_f_g, y_ds_hat_r, y_ds_hat_g, fmap_s_r,
fmap_s_g, global_step):
disc_factor = adopt_weight(
LAMBDA_ADV, global_step, threshold=discriminator_iter_start)
d_loss = disc_factor * criterion_d(y_disc_r_det, y_disc_gen_det, fmap_r_det,
fmap_gen_det, y_df_hat_r, y_df_hat_g,
fmap_f_r, fmap_f_g, y_ds_hat_r,
y_ds_hat_g, fmap_s_r, fmap_s_g)
return d_loss
class AttentionCTCLoss(torch.nn.Module):
def __init__(self, blank_logprob=-1):
super(AttentionCTCLoss, self).__init__()
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.blank_logprob = blank_logprob
self.CTCLoss = torch.nn.CTCLoss(zero_infinity=True)
def forward(self, attn_logprob, in_lens, out_lens):
key_lens = in_lens
query_lens = out_lens
attn_logprob_padded = F.pad(
input=attn_logprob, pad=(1, 0, 0, 0, 0, 0, 0, 0),
value=self.blank_logprob)
cost_total = 0.0
for bid in range(attn_logprob.shape[0]):
target_seq = torch.arange(1, key_lens[bid]+1).unsqueeze(0)
curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[
:query_lens[bid], :, :key_lens[bid]+1]
curr_logprob = self.log_softmax(curr_logprob[None])[0]
ctc_cost = self.CTCLoss(curr_logprob, target_seq,
input_lengths=query_lens[bid:bid+1],
target_lengths=key_lens[bid:bid+1])
cost_total += ctc_cost
cost = cost_total/attn_logprob.shape[0]
return cost
class FocalLoss(torch.nn.Module):
def __init__(self, gamma=0, eps=1e-7):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.eps = eps
self.ce = torch.nn.CrossEntropyLoss()
def forward(self, input, target):
logp = self.ce(input, target)
p = torch.exp(-logp)
loss = (1 - p) ** self.gamma * logp
return loss.mean()
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg ** 2)
loss += (r_loss + g_loss)
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
|