Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,371 Bytes
a4d0945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
import copy
import numbers
from functools import partial
from typing import Any, Callable, List, Optional, Tuple, Union
import torch
from torch import Tensor, nn
from torch.nn import functional as F
from .activation import MultiheadAttention
from .scaling import ActivationBalancer, BalancedDoubleSwish
from .scaling import BasicNorm as _BasicNorm
from .rotary_embedding import RotaryEmbedding
from .conv import ConvolutionModule, MultiLayeredConv1d
_shape_t = Union[int, List[int], torch.Size]
class LayerNorm(nn.Module):
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
normalized_shape: Tuple[int, ...]
eps: float
elementwise_affine: bool
def __init__(
self,
normalized_shape: _shape_t,
eps: float = 1e-5,
elementwise_affine: bool = True,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
self.bias = nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
if self.elementwise_affine:
nn.init.ones_(self.weight)
nn.init.zeros_(self.bias)
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
return (
F.layer_norm(
input,
self.normalized_shape,
self.weight,
self.bias,
self.eps,
),
embedding,
)
assert embedding is None
return F.layer_norm(
input, self.normalized_shape, self.weight, self.bias, self.eps
)
def extra_repr(self) -> str:
return (
"{normalized_shape}, eps={eps}, "
"elementwise_affine={elementwise_affine}".format(**self.__dict__)
)
class AdaptiveLayerNorm(nn.Module):
r"""Adaptive Layer Normalization"""
def __init__(self, d_model, norm) -> None:
super(AdaptiveLayerNorm, self).__init__()
self.project_layer = nn.Linear(d_model, 2 * d_model)
self.norm = norm
self.d_model = d_model
self.eps = self.norm.eps
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return (weight * self.norm(input) + bias, embedding)
weight, bias = torch.split(
self.project_layer(embedding),
split_size_or_sections=self.d_model,
dim=-1,
)
return weight * self.norm(input) + bias
class BasicNorm(_BasicNorm):
def __init__(
self,
d_model: int,
eps: float = 1e-5,
device=None,
dtype=None,
):
super(BasicNorm, self).__init__(d_model, eps=eps)
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
return (
super(BasicNorm, self).forward(input),
embedding,
)
assert embedding is None
return super(BasicNorm, self).forward(input)
class BalancedBasicNorm(nn.Module):
def __init__(
self,
d_model: int,
eps: float = 1e-5,
device=None,
dtype=None,
):
super(BalancedBasicNorm, self).__init__()
self.balancer = ActivationBalancer(
d_model,
channel_dim=-1,
min_positive=0.45,
max_positive=0.55,
max_abs=6.0,
)
self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype)
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
if isinstance(input, tuple):
input, embedding = input
return self.norm((self.balancer(input), embedding))
assert embedding is None
return self.norm(self.balancer(input))
class IdentityNorm(nn.Module):
def __init__(
self,
d_model: int,
eps: float = 1e-5,
device=None,
dtype=None,
) -> None:
super(IdentityNorm, self).__init__()
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
if isinstance(input, tuple):
return input
assert embedding is None
return input
class RMSNorm(nn.Module):
def __init__(self, d, p=-1., eps=1e-8, bias=False):
"""
Root Mean Square Layer Normalization
:param d: model size
:param p: partial RMSNorm, valid value [0, 1], default -1.0 (disabled)
:param eps: epsilon value, default 1e-8
:param bias: whether use bias term for RMSNorm, disabled by
default because RMSNorm doesn't enforce re-centering invariance.
"""
super(RMSNorm, self).__init__()
self.eps = eps
self.d = d
self.p = p
self.bias = bias
self.scale = nn.Parameter(torch.ones(d))
self.register_parameter("scale", self.scale)
if self.bias:
self.offset = nn.Parameter(torch.zeros(d))
self.register_parameter("offset", self.offset)
def forward(self, x):
if self.p < 0. or self.p > 1.:
norm_x = x.norm(2, dim=-1, keepdim=True)
d_x = self.d
else:
partial_size = int(self.d * self.p)
partial_x, _ = torch.split(x, [partial_size, self.d - partial_size], dim=-1)
norm_x = partial_x.norm(2, dim=-1, keepdim=True)
d_x = partial_size
rms_x = norm_x * d_x ** (-1. / 2)
x_normed = x / (rms_x + self.eps)
if self.bias:
return self.scale * x_normed + self.offset
return self.scale * x_normed
class TransformerEncoderLayer(nn.Module):
__constants__ = ["batch_first", "norm_first"]
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
batch_first: bool = False,
norm_first: bool = False,
device=None,
dtype=None,
linear1_self_attention_cls: nn.Module = nn.Linear,
linear2_self_attention_cls: nn.Module = nn.Linear,
linear1_feedforward_cls: nn.Module = nn.Linear,
linear2_feedforward_cls: nn.Module = nn.Linear,
layer_norm_cls: nn.Module = LayerNorm,
layer_norm_eps: float = 1e-5,
adaptive_layer_norm=False,
use_conv_module: bool = False,
use_depth_wise_conv: bool = False,
conv_ignore_prefix_len: int = 0,
cross_attention: bool = False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model,
nhead,
dropout=dropout,
batch_first=batch_first,
linear1_cls=linear1_self_attention_cls,
linear2_cls=linear2_self_attention_cls,
**factory_kwargs,
)
if cross_attention:
self.has_cross_attention = True
self.cross_attn = nn.MultiheadAttention(
d_model, nhead, 0.1, batch_first=True
)
self.norm3 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs
)
# Implementation of Feedforward model
self.use_depth_wise_conv = use_depth_wise_conv
self.use_conv_module = use_conv_module
if not use_depth_wise_conv:
self.linear1 = linear1_feedforward_cls(
d_model, dim_feedforward, **factory_kwargs
)
self.dropout = nn.Dropout(dropout)
self.linear2 = linear2_feedforward_cls(
dim_feedforward, d_model, **factory_kwargs
)
else:
self.dw_ffn = MultiLayeredConv1d(
in_chans=d_model,
hidden_chans=dim_feedforward,
kernel_size=5,
dropout_rate=dropout,
)
self.norm_first = norm_first
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = _get_activation_fn(activation)
elif isinstance(activation, partial):
activation = activation(d_model)
elif activation == BalancedDoubleSwish:
activation = BalancedDoubleSwish(d_model)
self.activation = activation
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
if layer_norm_cls == IdentityNorm:
norm2 = BalancedBasicNorm(
d_model, eps=layer_norm_eps, **factory_kwargs
)
else:
norm2 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs
)
if adaptive_layer_norm:
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
else:
self.norm1 = norm1
self.norm2 = norm2
self.rotary_emb = RotaryEmbedding(dim=d_model // nhead)
if use_conv_module:
self.conv_module = ConvolutionModule(
d_model,
kernel_size=31,
activation=activation,
ignore_prefix_len=conv_ignore_prefix_len,
)
self.norm_conv = LayerNorm(d_model) # for the CNN module
if adaptive_layer_norm:
self.norm_conv = AdaptiveLayerNorm(d_model, self.norm_conv)
else:
self.conv_module = None
def __setstate__(self, state):
super(TransformerEncoderLayer, self).__setstate__(state)
if not hasattr(self, "activation"):
self.activation = F.relu
def forward(
self,
src: Tensor,
context: Optional[Tensor] = None,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
use_rope: bool = False,
) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
is_src_tuple = False
if isinstance(src, tuple):
x, stage_embedding = src
is_src_tuple = True
else:
x, stage_embedding = src, None
if src_key_padding_mask is not None:
_skpm_dtype = src_key_padding_mask.dtype
if _skpm_dtype != torch.bool and not torch.is_floating_point(
src_key_padding_mask
):
raise AssertionError(
"only bool and floating types of key_padding_mask are supported"
)
if self.norm_first:
x = x + self._sa_block(
self.norm1(x, stage_embedding),
src_mask,
src_key_padding_mask,
use_rope=use_rope,
)
if self.conv_module is not None:
residual = x
x = self.norm_conv(x, stage_embedding)
x = residual + self.dropout1(self.conv_module(x))
# if self.has_cross_attention:
# x = x + self.cross_attn(
# self.norm3(x, stage_embedding),
# context,
# context,
# attn_mask=src_mask,
# )[0]
x = x + self._ff_block(self.norm2(x, stage_embedding))
else:
x = self.norm1(
x + self._sa_block(x, src_mask, src_key_padding_mask, use_rope=use_rope),
stage_embedding,
)
if self.conv_module is not None:
residual = x
x = residual + self.dropout(self.conv_module(x))
x = self.norm_conv(x, stage_embedding)
x = self.norm2(x + self._ff_block(x), stage_embedding)
if is_src_tuple:
return (x, stage_embedding)
return x
def infer(
self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
past_kv: Optional[Tensor] = None,
use_cache: bool = False,
use_rope: bool = False,
):
x, stage_embedding = src, None
is_src_tuple = False
if isinstance(src, tuple):
x, stage_embedding = src
is_src_tuple = True
if src_key_padding_mask is not None:
_skpm_dtype = src_key_padding_mask.dtype
if _skpm_dtype != torch.bool and not torch.is_floating_point(
src_key_padding_mask
):
raise AssertionError(
"only bool and floating types of key_padding_mask are supported"
)
if self.norm_first:
x_attn_out, kv = self.self_attn.infer(
self.norm1(x, stage_embedding),
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask,
need_weights=False,
past_kv=past_kv,
use_cache=use_cache,
use_rope=use_rope,
rope=self.rotary_emb
)
x = x + x_attn_out
x = x + self._ff_block(self.norm2(x, stage_embedding))
if is_src_tuple:
return (x, stage_embedding)
return (x, kv)
# self-attention block
def _sa_block(
self,
x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
use_rope: bool = False,
) -> Tensor:
x = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False,
use_rope=use_rope,
rope=self.rotary_emb
)[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
if self.use_depth_wise_conv:
x = self.dw_ffn(x)
else:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class TransformerEncoder(nn.Module):
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
enable_nested_tensor: if True, input will automatically convert to nested tensor
(and convert back on output). This will improve the overall performance of
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
Examples::
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(10, 32, 512)
>>> out = transformer_encoder(src)
"""
__constants__ = ["norm"]
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(
self,
src: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
return_layer_states: bool = False,
use_rope: bool = False,
) -> Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
return_layer_states: return layers' state (optional).
Shape:
see the docs in Transformer class.
"""
if return_layer_states:
layer_states = [] # layers' output
output = src
for mod in self.layers:
output = mod(
output,
src_mask=mask,
src_key_padding_mask=src_key_padding_mask,
use_rope=use_rope,
)
layer_states.append(output[0])
if self.norm is not None:
output = self.norm(output)
return layer_states, output
output = src
for mod in self.layers:
output = mod(
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, use_rope=use_rope
)
if self.norm is not None:
output = self.norm(output)
return output
def infer(
self,
src: Tensor,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
return_layer_states: bool = False,
past_kv: Optional[Tensor] = None,
use_cache: bool = False,
use_rope: bool = False,
):
if past_kv is None:
past_length = 0
past_kv = tuple([None] * self.num_layers)
else:
past_length = past_kv[0][0].size(-2)
new_kv = () if use_cache else None
output = src
for mod, past_layer_kv in zip(self.layers, past_kv):
output, kv = mod.infer(
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, past_kv=past_layer_kv, use_cache=use_cache, use_rope=use_rope
)
if use_cache:
new_kv = new_kv + (kv,)
if self.norm is not None:
output = self.norm(output)
return output, new_kv
class TransformerDecoderLayer(nn.Module):
__constants__ = ["batch_first", "norm_first"]
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
linear1_self_attention_cls: nn.Module = nn.Linear,
linear2_self_attention_cls: nn.Module = nn.Linear,
linear1_feedforward_cls: nn.Module = nn.Linear,
linear2_feedforward_cls: nn.Module = nn.Linear,
batch_first: bool = False,
norm_first: bool = False,
device=None,
dtype=None,
layer_norm_cls: nn.Module = LayerNorm,
layer_norm_eps: float = 1e-5,
adaptive_layer_norm=False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model,
nhead,
dropout=dropout,
batch_first=batch_first,
linear1_cls=linear1_self_attention_cls,
linear2_cls=linear2_self_attention_cls,
**factory_kwargs,
)
self.multihead_attn = MultiheadAttention(
d_model,
nhead,
dropout=dropout,
batch_first=batch_first,
linear1_cls=linear1_self_attention_cls,
linear2_cls=linear2_self_attention_cls,
**factory_kwargs,
)
# Implementation of Feedforward model
self.linear1 = linear1_feedforward_cls(
d_model, dim_feedforward, **factory_kwargs
)
self.dropout = nn.Dropout(dropout)
self.linear2 = linear2_feedforward_cls(
dim_feedforward, d_model, **factory_kwargs
)
self.norm_first = norm_first
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
self.activation = _get_activation_fn(activation)
elif isinstance(activation, partial):
self.activation = activation(d_model)
elif activation == BalancedDoubleSwish:
self.activation = BalancedDoubleSwish(d_model)
else:
self.activation = activation
if adaptive_layer_norm:
norm1 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs
)
norm2 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs
)
norm3 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs
)
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
self.norm3 = AdaptiveLayerNorm(d_model, norm3)
else:
self.norm1 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs
)
self.norm2 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs
)
if layer_norm_cls == IdentityNorm:
self.norm3 = BalancedBasicNorm(
d_model, eps=layer_norm_eps, **factory_kwargs
)
else:
self.norm3 = layer_norm_cls(
d_model, eps=layer_norm_eps, **factory_kwargs
)
self.rotary_emb = RotaryEmbedding(dim=d_model // nhead)
def forward(
self,
tgt: Tensor,
memory: Tensor,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
use_rope: bool = False,
) -> Tensor:
r"""Pass the inputs (and mask) through the decoder layer.
Args:
tgt: the sequence to the decoder layer (required).
memory: the sequence from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
tgt_is_tuple = False
if isinstance(tgt, tuple):
x, stage_embedding = tgt
tgt_is_tuple = True
else:
x, stage_embedding = tgt, None
if self.norm_first:
x = x + self._sa_block(
self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask, use_rope=use_rope,
)
x_mha_out, attn_map = self._mha_block(
self.norm2(x, stage_embedding),
memory,
memory_mask,
memory_key_padding_mask,
use_rope=use_rope,
)
x = x + x_mha_out
x = x + self._ff_block(self.norm3(x, stage_embedding))
else:
x = self.norm1(
x + self._sa_block(x, tgt_mask, tgt_key_padding_mask),
stage_embedding,
)
x = self.norm2(
x
+ self._mha_block(
x, memory, memory_mask, memory_key_padding_mask
),
stage_embedding,
)
x = self.norm3(x + self._ff_block(x), stage_embedding)
if tgt_is_tuple:
return (x, stage_embedding)
return x, attn_map
# self-attention block
def _sa_block(
self,
x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
use_rope: bool = False,
) -> Tensor:
x = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False,
use_rope=use_rope,
rope=self.rotary_emb
)[0]
return self.dropout1(x)
# multihead attention block
def _mha_block(
self,
x: Tensor,
mem: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
use_rope: bool = False,
) -> Tensor:
x = self.multihead_attn(
x,
mem,
mem,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False,
use_rope=use_rope,
rope=self.rotary_emb
)[0]
x, attn_map = x
return self.dropout2(x[0]), attn_map
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout3(x)
class TransformerDecoder(nn.Module):
r"""TransformerDecoder is a stack of N decoder layers. Users can build the
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
Args:
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
num_layers: the number of sub-decoder-layers in the decoder (required).
norm: the layer normalization component (optional).
enable_nested_tensor: if True, input will automatically convert to nested tensor
(and convert back on output). This will improve the overall performance of
TransformerDecoder when padding rate is high. Default: ``True`` (enabled).
Examples::
>>> decoder_layer = TransformerDecoderLayer(d_model=512, nhead=8)
>>> transformer_decoder = TransformerDecoder(decoder_layer, num_layers=6)
>>> tgt = torch.rand(10, 32, 512)
>>> memory = torch.rand(20, 32, 512)
>>> out = transformer_decoder(tgt, memory)
"""
__constants__ = ["norm"]
def __init__(self, decoder_layer, num_layers, norm=None):
super(TransformerDecoder, self).__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(
self,
tgt: Tensor,
memory: Tensor,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
return_attn: bool = False,
use_rope: bool = False,
) -> Tensor:
r"""Pass the inputs (and mask) through the decoder layers in turn.
Args:
tgt: the sequence to the decoder (required).
memory: the sequence from the last layer of the encoder (required).
tgt_mask: the mask for the tgt sequence (optional).
memory_mask: the mask for the memory sequence (optional).
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
memory_key_padding_mask: the mask for the memory keys per batch (optional).
return_attn: return cross attention maps of each layer (optional).
Shape:
see the docs in Transformer class.
"""
attn_maps = []
output = tgt
for mod in self.layers:
output, attn_map = mod(
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
use_rope=use_rope,
)
if return_attn:
attn_maps.append(attn_map)
if self.norm is not None:
output = self.norm(output)
return output, attn_maps
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError(
"activation should be relu/gelu, not {}".format(activation)
)
|