Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,776 Bytes
a4d0945 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
from dac.nn.quantize import ResidualVectorQuantize
from torch import nn
from modules.wavenet import WN
from modules.style_encoder import StyleEncoder
from gradient_reversal import GradientReversal
import torch
import torchaudio
import torchaudio.functional as audio_F
import numpy as np
from alias_free_torch import *
from torch.nn.utils import weight_norm
from torch import nn, sin, pow
from einops.layers.torch import Rearrange
from dac.model.encodec import SConv1d
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
class SnakeBeta(nn.Module):
"""
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
):
"""
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
"""
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta := x + 1/b * sin^2 (xa)
"""
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
return x + self.block(x)
class CNNLSTM(nn.Module):
def __init__(self, indim, outdim, head, global_pred=False):
super().__init__()
self.global_pred = global_pred
self.model = nn.Sequential(
ResidualUnit(indim, dilation=1),
ResidualUnit(indim, dilation=2),
ResidualUnit(indim, dilation=3),
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
Rearrange("b c t -> b t c"),
)
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
def forward(self, x):
# x: [B, C, T]
x = self.model(x)
if self.global_pred:
x = torch.mean(x, dim=1, keepdim=False)
outs = [head(x) for head in self.heads]
return outs
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
class MFCC(nn.Module):
def __init__(self, n_mfcc=40, n_mels=80):
super(MFCC, self).__init__()
self.n_mfcc = n_mfcc
self.n_mels = n_mels
self.norm = 'ortho'
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
self.register_buffer('dct_mat', dct_mat)
def forward(self, mel_specgram):
if len(mel_specgram.shape) == 2:
mel_specgram = mel_specgram.unsqueeze(0)
unsqueezed = True
else:
unsqueezed = False
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
# -> (channel, time, n_mfcc).tranpose(...)
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
# unpack batch
if unsqueezed:
mfcc = mfcc.squeeze(0)
return mfcc
class FAquantizer(nn.Module):
def __init__(self, in_dim=1024,
n_p_codebooks=1,
n_c_codebooks=2,
n_t_codebooks=2,
n_r_codebooks=3,
codebook_size=1024,
codebook_dim=8,
quantizer_dropout=0.5,
causal=False,
separate_prosody_encoder=False,
timbre_norm=False,):
super(FAquantizer, self).__init__()
conv1d_type = SConv1d# if causal else nn.Conv1d
self.prosody_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_p_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
self.content_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_c_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
if not timbre_norm:
self.timbre_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_t_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
else:
self.timbre_encoder = StyleEncoder(in_dim=80, hidden_dim=512, out_dim=in_dim)
self.timbre_linear = nn.Linear(1024, 1024 * 2)
self.timbre_linear.bias.data[:1024] = 1
self.timbre_linear.bias.data[1024:] = 0
self.timbre_norm = nn.LayerNorm(1024, elementwise_affine=False)
self.residual_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_r_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
if separate_prosody_encoder:
self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal)
self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal)
self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal)
else:
pass
self.separate_prosody_encoder = separate_prosody_encoder
self.prob_random_mask_residual = 0.75
SPECT_PARAMS = {
"n_fft": 2048,
"win_length": 1200,
"hop_length": 300,
}
MEL_PARAMS = {
"n_mels": 80,
}
self.to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS
)
self.mel_mean, self.mel_std = -4, 4
self.frame_rate = 24000 / 300
self.hop_length = 300
self.is_timbre_norm = timbre_norm
if timbre_norm:
self.forward = self.forward_v2
def preprocess(self, wave_tensor, n_bins=20):
mel_tensor = self.to_mel(wave_tensor.squeeze(1))
mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std
return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)]
@torch.no_grad()
def decode(self, codes):
code_c, code_p, code_t = codes.split([1, 1, 2], dim=1)
z_c = self.content_quantizer.from_codes(code_c)[0]
z_p = self.prosody_quantizer.from_codes(code_p)[0]
z_t = self.timbre_quantizer.from_codes(code_t)[0]
z = z_c + z_p + z_t
return z, [z_c, z_p, z_t]
@torch.no_grad()
def encode(self, x, wave_segments, n_c=1):
outs = 0
if self.separate_prosody_encoder:
prosody_feature = self.preprocess(wave_segments)
f0_input = prosody_feature # (B, T, 20)
f0_input = self.melspec_linear(f0_input)
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
f0_input.device).bool())
f0_input = self.melspec_linear2(f0_input)
common_min_size = min(f0_input.size(2), x.size(2))
f0_input = f0_input[:, :, :common_min_size]
x = x[:, :, :common_min_size]
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
f0_input, 1
)
outs += z_p.detach()
else:
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
x, 1
)
outs += z_p.detach()
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
x, n_c
)
outs += z_c.detach()
timbre_residual_feature = x - z_p.detach() - z_c.detach()
z_t, codes_t, latents_t, commitment_loss_t, codebook_loss_t = self.timbre_quantizer(
timbre_residual_feature, 2
)
outs += z_t # we should not detach timbre
residual_feature = timbre_residual_feature - z_t
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
residual_feature, 3
)
return [codes_c, codes_p, codes_t, codes_r], [z_c, z_p, z_t, z_r]
def forward(self, x, wave_segments, noise_added_flags, recon_noisy_flags, n_c=2, n_t=2):
# timbre = self.timbre_encoder(mels, sequence_mask(mel_lens, mels.size(-1)).unsqueeze(1))
# timbre = self.timbre_encoder(mel_segments, torch.ones(mel_segments.size(0), 1, mel_segments.size(2)).bool().to(mel_segments.device))
outs = 0
if self.separate_prosody_encoder:
prosody_feature = self.preprocess(wave_segments)
f0_input = prosody_feature # (B, T, 20)
f0_input = self.melspec_linear(f0_input)
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(f0_input.device).bool())
f0_input = self.melspec_linear2(f0_input)
common_min_size = min(f0_input.size(2), x.size(2))
f0_input = f0_input[:, :, :common_min_size]
x = x[:, :, :common_min_size]
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
f0_input, 1
)
outs += z_p.detach()
else:
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
x, 1
)
outs += z_p.detach()
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
x, n_c
)
outs += z_c.detach()
timbre_residual_feature = x - z_p.detach() - z_c.detach()
z_t, codes_t, latents_t, commitment_loss_t, codebook_loss_t = self.timbre_quantizer(
timbre_residual_feature, n_t
)
outs += z_t # we should not detach timbre
residual_feature = timbre_residual_feature - z_t
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
residual_feature, 3
)
bsz = z_r.shape[0]
res_mask = np.random.choice(
[0, 1],
size=bsz,
p=[
self.prob_random_mask_residual,
1 - self.prob_random_mask_residual,
],
)
res_mask = (
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
) # (B, 1, 1)
res_mask = res_mask.to(
device=z_r.device, dtype=z_r.dtype
)
noise_must_on = noise_added_flags * recon_noisy_flags
noise_must_off = noise_added_flags * (~recon_noisy_flags)
res_mask[noise_must_on] = 1
res_mask[noise_must_off] = 0
outs += z_r * res_mask
quantized = [z_p, z_c, z_t, z_r]
commitment_losses = commitment_loss_p + commitment_loss_c + commitment_loss_t + commitment_loss_r
codebook_losses = codebook_loss_p + codebook_loss_c + codebook_loss_t + codebook_loss_r
return outs, quantized, commitment_losses, codebook_losses
def forward_v2(self, x, wave_segments, n_c=1, n_t=2, full_waves=None, wave_lens=None, return_codes=False):
# timbre = self.timbre_encoder(x, sequence_mask(mel_lens, mels.size(-1)).unsqueeze(1))
if full_waves is None:
mel = self.preprocess(wave_segments, n_bins=80)
timbre = self.timbre_encoder(mel, torch.ones(mel.size(0), 1, mel.size(2)).bool().to(mel.device))
else:
mel = self.preprocess(full_waves, n_bins=80)
timbre = self.timbre_encoder(mel, sequence_mask(wave_lens // self.hop_length, mel.size(-1)).unsqueeze(1))
outs = 0
if self.separate_prosody_encoder:
prosody_feature = self.preprocess(wave_segments)
f0_input = prosody_feature # (B, T, 20)
f0_input = self.melspec_linear(f0_input)
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
f0_input.device).bool())
f0_input = self.melspec_linear2(f0_input)
common_min_size = min(f0_input.size(2), x.size(2))
f0_input = f0_input[:, :, :common_min_size]
x = x[:, :, :common_min_size]
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
f0_input, 1
)
outs += z_p.detach()
else:
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
x, 1
)
outs += z_p.detach()
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
x, n_c
)
outs += z_c.detach()
residual_feature = x - z_p.detach() - z_c.detach()
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
residual_feature, 3
)
bsz = z_r.shape[0]
res_mask = np.random.choice(
[0, 1],
size=bsz,
p=[
self.prob_random_mask_residual,
1 - self.prob_random_mask_residual,
],
)
res_mask = (
torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1)
) # (B, 1, 1)
res_mask = res_mask.to(
device=z_r.device, dtype=z_r.dtype
)
if not self.training:
res_mask = torch.ones_like(res_mask)
outs += z_r * res_mask
quantized = [z_p, z_c, z_r]
codes = [codes_p, codes_c, codes_r]
commitment_losses = commitment_loss_p + commitment_loss_c + commitment_loss_r
codebook_losses = codebook_loss_p + codebook_loss_c + codebook_loss_r
style = self.timbre_linear(timbre).unsqueeze(2) # (B, 2d, 1)
gamma, beta = style.chunk(2, 1) # (B, d, 1)
outs = outs.transpose(1, 2)
outs = self.timbre_norm(outs)
outs = outs.transpose(1, 2)
outs = outs * gamma + beta
if return_codes:
return outs, quantized, commitment_losses, codebook_losses, timbre, codes
else:
return outs, quantized, commitment_losses, codebook_losses, timbre
class FApredictors(nn.Module):
def __init__(self,
in_dim=1024,
use_gr_content_f0=False,
use_gr_prosody_phone=False,
use_gr_residual_f0=False,
use_gr_residual_phone=False,
use_gr_timbre_content=True,
use_gr_timbre_prosody=True,
use_gr_x_timbre=False,
norm_f0=True,
timbre_norm=False,
use_gr_content_global_f0=False,
):
super(FApredictors, self).__init__()
self.f0_predictor = CNNLSTM(in_dim, 1, 2)
self.phone_predictor = CNNLSTM(in_dim, 1024, 1)
if timbre_norm:
self.timbre_predictor = nn.Linear(in_dim, 20000)
else:
self.timbre_predictor = CNNLSTM(in_dim, 20000, 1, global_pred=True)
self.use_gr_content_f0 = use_gr_content_f0
self.use_gr_prosody_phone = use_gr_prosody_phone
self.use_gr_residual_f0 = use_gr_residual_f0
self.use_gr_residual_phone = use_gr_residual_phone
self.use_gr_timbre_content = use_gr_timbre_content
self.use_gr_timbre_prosody = use_gr_timbre_prosody
self.use_gr_x_timbre = use_gr_x_timbre
self.rev_f0_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 2)
)
self.rev_content_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1024, 1)
)
self.rev_timbre_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 20000, 1, global_pred=True)
)
self.norm_f0 = norm_f0
self.timbre_norm = timbre_norm
if timbre_norm:
self.forward = self.forward_v2
self.global_f0_predictor = nn.Linear(in_dim, 1)
self.use_gr_content_global_f0 = use_gr_content_global_f0
if use_gr_content_global_f0:
self.rev_global_f0_predictor = nn.Sequential(
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 1, global_pred=True)
)
def forward(self, quantized):
prosody_latent = quantized[0]
content_latent = quantized[1]
timbre_latent = quantized[2]
residual_latent = quantized[3]
content_pred = self.phone_predictor(content_latent)[0]
if self.norm_f0:
spk_pred = self.timbre_predictor(timbre_latent)[0]
f0_pred, uv_pred = self.f0_predictor(prosody_latent)
else:
spk_pred = self.timbre_predictor(timbre_latent + prosody_latent)[0]
f0_pred, uv_pred = self.f0_predictor(prosody_latent + timbre_latent)
prosody_rev_latent = torch.zeros_like(quantized[0])
if self.use_gr_content_f0:
prosody_rev_latent += quantized[1]
if self.use_gr_timbre_prosody:
prosody_rev_latent += quantized[2]
if self.use_gr_residual_f0:
prosody_rev_latent += quantized[3]
rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent)
content_rev_latent = torch.zeros_like(quantized[1])
if self.use_gr_prosody_phone:
content_rev_latent += quantized[0]
if self.use_gr_timbre_content:
content_rev_latent += quantized[2]
if self.use_gr_residual_phone:
content_rev_latent += quantized[3]
rev_content_pred = self.rev_content_predictor(content_rev_latent)[0]
if self.norm_f0:
timbre_rev_latent = quantized[0] + quantized[1] + quantized[3]
else:
timbre_rev_latent = quantized[1] + quantized[3]
if self.use_gr_x_timbre:
x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0]
else:
x_spk_pred = None
preds = {
'f0': f0_pred,
'uv': uv_pred,
'content': content_pred,
'timbre': spk_pred,
}
rev_preds = {
'rev_f0': rev_f0_pred,
'rev_uv': rev_uv_pred,
'rev_content': rev_content_pred,
'x_timbre': x_spk_pred,
}
return preds, rev_preds
def forward_v2(self, quantized, timbre):
assert self.use_gr_content_global_f0
prosody_latent = quantized[0]
content_latent = quantized[1]
residual_latent = quantized[2]
content_pred = self.phone_predictor(content_latent)[0]
# spk_pred = self.timbre_predictor(timbre)[0]
f0_pred, uv_pred = self.f0_predictor(prosody_latent)
prosody_rev_latent = torch.zeros_like(prosody_latent)
if self.use_gr_content_f0:
prosody_rev_latent += content_latent
if self.use_gr_residual_f0:
prosody_rev_latent += residual_latent
rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent)
content_rev_latent = torch.zeros_like(content_latent)
if self.use_gr_prosody_phone:
content_rev_latent += prosody_latent
if self.use_gr_residual_phone:
content_rev_latent += residual_latent
rev_content_pred = self.rev_content_predictor(content_rev_latent)[0]
timbre_rev_latent = prosody_latent + content_latent + residual_latent
if self.use_gr_x_timbre:
x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0]
else:
x_spk_pred = None
global_f0_pred = self.global_f0_predictor(timbre)
if self.use_gr_content_global_f0:
rev_global_f0_pred = self.rev_global_f0_predictor(content_latent + prosody_latent + residual_latent)[0]
preds = {
'f0': f0_pred,
'uv': uv_pred,
'content': content_pred,
'timbre': None,
'global_f0': global_f0_pred,
}
rev_preds = {
'rev_f0': rev_f0_pred,
'rev_uv': rev_uv_pred,
'rev_content': rev_content_pred,
'x_timbre': x_spk_pred,
'rev_global_f0': rev_global_f0_pred,
}
return preds, rev_preds
|