import gradio as gr import torch import torchaudio import librosa import numpy as np import os from huggingface_hub import hf_hub_download import yaml from modules.commons import recursive_munch, build_model # setup device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # load model def load_model(repo_id): ckpt_path = hf_hub_download(repo_id, "pytorch_model.bin", cache_dir="./checkpoints") config_path = hf_hub_download(repo_id, "config.yml", cache_dir="./checkpoints") config = yaml.safe_load(open(config_path)) model_params = recursive_munch(config['model_params']) if "redecoder" in repo_id: model = build_model(model_params, stage="redecoder") else: model = build_model(model_params, stage="codec") ckpt_params = torch.load(ckpt_path, map_location="cpu") for key in model: model[key].load_state_dict(ckpt_params[key]) model[key].eval() model[key].to(device) return model # load models codec_model = load_model("Plachta/FAcodec") redecoder_model = load_model("Plachta/FAcodec-redecoder") # preprocess audio def preprocess_audio(audio_path, sr=24000): audio = librosa.load(audio_path, sr=sr)[0] # if audio has two channels, take the first one if len(audio.shape) > 1: audio = audio[0] audio = audio[:sr * 30] # crop only the first 30 seconds return torch.tensor(audio).unsqueeze(0).float().to(device) # audio reconstruction function @torch.no_grad() def reconstruct_audio(audio): source_audio = preprocess_audio(audio) z = codec_model.encoder(source_audio[None, ...]) z, _, _, _, _ = codec_model.quantizer(z, source_audio[None, ...], n_c=2) reconstructed_wave = codec_model.decoder(z) return (24000, reconstructed_wave[0, 0].cpu().numpy()) # voice conversion function @torch.no_grad() def voice_conversion(source_audio, target_audio): source_audio = preprocess_audio(source_audio) target_audio = preprocess_audio(target_audio) z = codec_model.encoder(source_audio[None, ...]) z, _, _, _, timbre, codes = codec_model.quantizer(z, source_audio[None, ...], n_c=2, return_codes=True) z_target = codec_model.encoder(target_audio[None, ...]) _, _, _, _, timbre_target, _ = codec_model.quantizer(z_target, target_audio[None, ...], n_c=2, return_codes=True) z_converted = redecoder_model.encoder(codes[0], codes[1], timbre_target, use_p_code=False, n_c=1) converted_wave = redecoder_model.decoder(z_converted) return (24000, converted_wave[0, 0].cpu().numpy()) # gradio interface def gradio_interface(): with gr.Blocks() as demo: gr.Markdown( "# FAcodec reconstruction and voice conversion" "[![GitHub stars](https://img.shields.io/github/stars/username/repo-name.svg?style=social&label=Star&maxAge=2592000)](https://github.com/Plachtaa/FAcodec)" "FAcodec from [Natural Speech 3](https://arxiv.org/pdf/2403.03100). The checkpoint used in this demo is trained on an improved pipeline of " "where all kinds of annotations are not required, enabling the scale up of training data.
This model is " "trained on 50k hours of data with over 1 million speakers, largely improved timbre diversity compared to " "the [original FAcodec](https://huggingface.co/spaces/amphion/naturalspeech3_facodec)." "

This project is supported by [Amphion](https://github.com/open-mmlab/Amphion)" ) with gr.Tab("reconstruction"): with gr.Row(): input_audio = gr.Audio(type="filepath", label="Input audio") output_audio = gr.Audio(label="Reconstructed audio") reconstruct_btn = gr.Button("Reconstruct") reconstruct_btn.click(reconstruct_audio, inputs=[input_audio], outputs=[output_audio]) with gr.Tab("voice conversion"): with gr.Row(): source_audio = gr.Audio(type="filepath", label="Source audio") target_audio = gr.Audio(type="filepath", label="Reference audio") converted_audio = gr.Audio(label="Converted audio") convert_btn = gr.Button("Convert") convert_btn.click(voice_conversion, inputs=[source_audio, target_audio], outputs=[converted_audio]) return demo if __name__ == "__main__": iface = gradio_interface() iface.launch()