import gradio as gr
import torch
import torchaudio
import librosa
import numpy as np
import os
from huggingface_hub import hf_hub_download
import yaml
from modules.commons import recursive_munch, build_model
# setup device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# load model
def load_model(repo_id):
ckpt_path = hf_hub_download(repo_id, "pytorch_model.bin", cache_dir="./checkpoints")
config_path = hf_hub_download(repo_id, "config.yml", cache_dir="./checkpoints")
config = yaml.safe_load(open(config_path))
model_params = recursive_munch(config['model_params'])
if "redecoder" in repo_id:
model = build_model(model_params, stage="redecoder")
else:
model = build_model(model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu")
for key in model:
model[key].load_state_dict(ckpt_params[key])
model[key].eval()
model[key].to(device)
return model
# load models
codec_model = load_model("Plachta/FAcodec")
redecoder_model = load_model("Plachta/FAcodec-redecoder")
# preprocess audio
def preprocess_audio(audio_path, sr=24000):
audio = librosa.load(audio_path, sr=sr)[0]
# if audio has two channels, take the first one
if len(audio.shape) > 1:
audio = audio[0]
audio = audio[:sr * 30] # crop only the first 30 seconds
return torch.tensor(audio).unsqueeze(0).float().to(device)
# audio reconstruction function
@torch.no_grad()
def reconstruct_audio(audio):
source_audio = preprocess_audio(audio)
z = codec_model.encoder(source_audio[None, ...])
z, _, _, _, _ = codec_model.quantizer(z, source_audio[None, ...], n_c=2)
reconstructed_wave = codec_model.decoder(z)
return (24000, reconstructed_wave[0, 0].cpu().numpy())
# voice conversion function
@torch.no_grad()
def voice_conversion(source_audio, target_audio):
source_audio = preprocess_audio(source_audio)
target_audio = preprocess_audio(target_audio)
z = codec_model.encoder(source_audio[None, ...])
z, _, _, _, timbre, codes = codec_model.quantizer(z, source_audio[None, ...], n_c=2, return_codes=True)
z_target = codec_model.encoder(target_audio[None, ...])
_, _, _, _, timbre_target, _ = codec_model.quantizer(z_target, target_audio[None, ...], n_c=2, return_codes=True)
z_converted = redecoder_model.encoder(codes[0], codes[1], timbre_target, use_p_code=False, n_c=1)
converted_wave = redecoder_model.decoder(z_converted)
return (24000, converted_wave[0, 0].cpu().numpy())
# gradio interface
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown(
"# FAcodec reconstruction and voice conversion"
"[![GitHub stars](https://img.shields.io/github/stars/Plachtaa/FAcodec)](https://github.com/Plachtaa/FAcodec)"
)
gr.Markdown(
"FAcodec from [Natural Speech 3](https://arxiv.org/pdf/2403.03100).
The checkpoint used in this demo is trained on an improved pipeline "
"where all kinds of annotations are not required, enabling the scale up of training data.
This model is "
"trained on 50k hours 24000Hz speech data with over 1 million speakers, largely improved timbre diversity compared to "
"the [original FAcodec](https://huggingface.co/spaces/amphion/naturalspeech3_facodec)."
"
This project is supported by [Amphion](https://github.com/open-mmlab/Amphion)"
)
with gr.Tab("reconstruction"):
with gr.Row():
input_audio = gr.Audio(type="filepath", label="Input audio")
output_audio = gr.Audio(label="Reconstructed audio")
reconstruct_btn = gr.Button("Reconstruct")
reconstruct_btn.click(reconstruct_audio, inputs=[input_audio], outputs=[output_audio])
with gr.Tab("voice conversion"):
with gr.Row():
source_audio = gr.Audio(type="filepath", label="Source audio")
target_audio = gr.Audio(type="filepath", label="Reference audio")
converted_audio = gr.Audio(label="Converted audio")
convert_btn = gr.Button("Convert")
convert_btn.click(voice_conversion, inputs=[source_audio, target_audio], outputs=[converted_audio])
return demo
if __name__ == "__main__":
iface = gradio_interface()
iface.launch()