Spaces:
Running
on
L4
Running
on
L4
import logging | |
import os | |
import pathlib | |
import time | |
import tempfile | |
import platform | |
import gc | |
if platform.system().lower() == 'windows': | |
temp = pathlib.PosixPath | |
pathlib.PosixPath = pathlib.WindowsPath | |
elif platform.system().lower() == 'linux': | |
temp = pathlib.WindowsPath | |
pathlib.WindowsPath = pathlib.PosixPath | |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
import langid | |
langid.set_languages(['en', 'zh', 'ja']) | |
import torch | |
import torchaudio | |
import numpy as np | |
from data.tokenizer import ( | |
AudioTokenizer, | |
tokenize_audio, | |
) | |
from data.collation import get_text_token_collater | |
from models.vallex import VALLE | |
from utils.g2p import PhonemeBpeTokenizer | |
from descriptions import * | |
from macros import * | |
from examples import * | |
import gradio as gr | |
from vocos import Vocos | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
torch._C._jit_set_profiling_executor(False) | |
torch._C._jit_set_profiling_mode(False) | |
torch._C._set_graph_executor_optimize(False) | |
text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json") | |
text_collater = get_text_token_collater() | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda", 0) | |
# VALL-E-X model | |
model = VALLE( | |
N_DIM, | |
NUM_HEAD, | |
NUM_LAYERS, | |
norm_first=True, | |
add_prenet=False, | |
prefix_mode=PREFIX_MODE, | |
share_embedding=True, | |
nar_scale_factor=1.0, | |
prepend_bos=True, | |
num_quantizers=NUM_QUANTIZERS, | |
).to(device) | |
checkpoint = torch.load("./epoch-10.pt", map_location='cpu') | |
missing_keys, unexpected_keys = model.load_state_dict( | |
checkpoint["model"], strict=True | |
) | |
del checkpoint | |
assert not missing_keys | |
model.eval() | |
# Encodec model | |
audio_tokenizer = AudioTokenizer(device) | |
# Vocos decoder | |
vocos = Vocos.from_pretrained('charactr/vocos-encodec-24khz').to(device) | |
# ASR | |
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-medium") | |
whisper = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium").to(device) | |
whisper.config.forced_decoder_ids = None | |
# Voice Presets | |
preset_list = os.walk("./presets/").__next__()[2] | |
preset_list = [preset[:-4] for preset in preset_list if preset.endswith(".npz")] | |
def clear_prompts(): | |
try: | |
path = tempfile.gettempdir() | |
for eachfile in os.listdir(path): | |
filename = os.path.join(path, eachfile) | |
if os.path.isfile(filename) and filename.endswith(".npz"): | |
lastmodifytime = os.stat(filename).st_mtime | |
endfiletime = time.time() - 60 | |
if endfiletime > lastmodifytime: | |
os.remove(filename) | |
del path, filename, lastmodifytime, endfiletime | |
gc.collect() | |
except: | |
return | |
def transcribe_one(wav, sr): | |
if sr != 16000: | |
wav4trans = torchaudio.transforms.Resample(sr, 16000)(wav) | |
else: | |
wav4trans = wav | |
input_features = whisper_processor(wav4trans.squeeze(0), sampling_rate=16000, return_tensors="pt").input_features | |
# generate token ids | |
predicted_ids = whisper.generate(input_features.to(device)) | |
lang = whisper_processor.batch_decode(predicted_ids[:, 1])[0].strip("<|>") | |
# decode token ids to text | |
text_pr = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
# print the recognized text | |
print(text_pr) | |
if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": | |
text_pr += "." | |
# delete all variables | |
del wav4trans, input_features, predicted_ids | |
gc.collect() | |
return lang, text_pr | |
def make_npz_prompt(name, uploaded_audio, recorded_audio, transcript_content): | |
clear_prompts() | |
audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio | |
sr, wav_pr = audio_prompt | |
if len(wav_pr) / sr > 15: | |
return "Rejected, Audio too long (should be less than 15 seconds)", None | |
if not isinstance(wav_pr, torch.FloatTensor): | |
wav_pr = torch.FloatTensor(wav_pr) | |
if wav_pr.abs().max() > 1: | |
wav_pr /= wav_pr.abs().max() | |
if wav_pr.size(-1) == 2: | |
wav_pr = wav_pr[:, 0] | |
if wav_pr.ndim == 1: | |
wav_pr = wav_pr.unsqueeze(0) | |
assert wav_pr.ndim and wav_pr.size(0) == 1 | |
if transcript_content == "": | |
lang_pr, text_pr = transcribe_one(wav_pr, sr) | |
lang_token = lang2token[lang_pr] | |
text_pr = lang_token + text_pr + lang_token | |
else: | |
lang_pr = langid.classify(str(transcript_content))[0] | |
lang_token = lang2token[lang_pr] | |
transcript_content = transcript_content.replace("\n", "") | |
text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" | |
# tokenize audio | |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) | |
audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() | |
# tokenize text | |
phonemes, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
text_tokens, enroll_x_lens = text_collater( | |
[ | |
phonemes | |
] | |
) | |
message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" | |
if lang_pr not in ['ja', 'zh', 'en']: | |
return f"Prompt can only made with one of model-supported languages, got {lang_pr} instead", None | |
# save as npz file | |
np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"), | |
audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) | |
# delete all variables | |
del audio_tokens, text_tokens, phonemes, lang_pr, text_pr, wav_pr, sr, uploaded_audio, recorded_audio | |
gc.collect() | |
return message, os.path.join(tempfile.gettempdir(), f"{name}.npz") | |
def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt, transcript_content): | |
if len(text) > 150: | |
return "Rejected, Text too long (should be less than 150 characters)", None | |
audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt | |
sr, wav_pr = audio_prompt | |
if len(wav_pr) / sr > 15: | |
return "Rejected, Audio too long (should be less than 15 seconds)", None | |
if not isinstance(wav_pr, torch.FloatTensor): | |
wav_pr = torch.FloatTensor(wav_pr) | |
if wav_pr.abs().max() > 1: | |
wav_pr /= wav_pr.abs().max() | |
if wav_pr.size(-1) == 2: | |
wav_pr = wav_pr[:, 0] | |
if wav_pr.ndim == 1: | |
wav_pr = wav_pr.unsqueeze(0) | |
assert wav_pr.ndim and wav_pr.size(0) == 1 | |
if transcript_content == "": | |
lang_pr, text_pr = transcribe_one(wav_pr, sr) | |
lang_token = lang2token[lang_pr] | |
text_pr = lang_token + text_pr + lang_token | |
else: | |
lang_pr = langid.classify(str(transcript_content))[0] | |
text_pr = transcript_content.replace("\n", "") | |
lang_token = lang2token[lang_pr] | |
text_pr = lang_token + text_pr + lang_token | |
if language == 'auto-detect': | |
lang_token = lang2token[langid.classify(text)[0]] | |
else: | |
lang_token = langdropdown2token[language] | |
lang = token2lang[lang_token] | |
text = text.replace("\n", "") | |
text = lang_token + text + lang_token | |
if lang_pr not in ['ja', 'zh', 'en']: | |
return f"Reference audio must be a speech of one of model-supported languages, got {lang_pr} instead", None | |
# tokenize audio | |
encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) | |
audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device) | |
# tokenize text | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
enroll_x_lens = None | |
if text_pr: | |
text_prompts, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
text_prompts, enroll_x_lens = text_collater( | |
[ | |
text_prompts | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
) | |
# Decode with Vocos | |
frames = encoded_frames.permute(2,0,1) | |
features = vocos.codes_to_features(frames) | |
samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
message = f"text prompt: {text_pr}\nsythesized text: {text}" | |
# delete all variables | |
del audio_prompts, text_tokens, text_prompts, phone_tokens, encoded_frames, wav_pr, sr, audio_prompt, record_audio_prompt, transcript_content | |
gc.collect() | |
return message, (24000, samples.squeeze(0).cpu().numpy()) | |
def infer_from_prompt(text, language, accent, preset_prompt, prompt_file): | |
if len(text) > 150: | |
return "Rejected, Text too long (should be less than 150 characters)", None | |
clear_prompts() | |
# text to synthesize | |
if language == 'auto-detect': | |
lang_token = lang2token[langid.classify(text)[0]] | |
else: | |
lang_token = langdropdown2token[language] | |
lang = token2lang[lang_token] | |
text = text.replace("\n", "") | |
text = lang_token + text + lang_token | |
# load prompt | |
if prompt_file is not None: | |
prompt_data = np.load(prompt_file.name) | |
else: | |
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
) | |
# Decode with Vocos | |
frames = encoded_frames.permute(2,0,1) | |
features = vocos.codes_to_features(frames) | |
samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
message = f"sythesized text: {text}" | |
# delete all variables | |
del audio_prompts, text_tokens, text_prompts, phone_tokens, encoded_frames, prompt_file, preset_prompt | |
gc.collect() | |
return message, (24000, samples.squeeze(0).cpu().numpy()) | |
def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='no-accent'): | |
""" | |
For long audio generation, two modes are available. | |
fixed-prompt: This mode will keep using the same prompt the user has provided, and generate audio sentence by sentence. | |
sliding-window: This mode will use the last sentence as the prompt for the next sentence, but has some concern on speaker maintenance. | |
""" | |
from utils.sentence_cutter import split_text_into_sentences | |
if len(text) > 1000: | |
return "Rejected, Text too long (should be less than 1000 characters)", None | |
mode = 'fixed-prompt' | |
global model, audio_tokenizer, text_tokenizer, text_collater | |
if (prompt is None or prompt == "") and preset_prompt == "": | |
mode = 'sliding-window' # If no prompt is given, use sliding-window mode | |
sentences = split_text_into_sentences(text) | |
# detect language | |
if language == "auto-detect": | |
language = langid.classify(text)[0] | |
else: | |
language = token2lang[langdropdown2token[language]] | |
# if initial prompt is given, encode it | |
if prompt is not None and prompt != "": | |
# load prompt | |
prompt_data = np.load(prompt.name) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
elif preset_prompt is not None and preset_prompt != "": | |
prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) | |
audio_prompts = prompt_data['audio_tokens'] | |
text_prompts = prompt_data['text_tokens'] | |
lang_pr = prompt_data['lang_code'] | |
lang_pr = code2lang[int(lang_pr)] | |
# numpy to tensor | |
audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
else: | |
audio_prompts = torch.zeros([1, 0, NUM_QUANTIZERS]).type(torch.int32).to(device) | |
text_prompts = torch.zeros([1, 0]).type(torch.int32) | |
lang_pr = language if language != 'mix' else 'en' | |
if mode == 'fixed-prompt': | |
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) | |
for text in sentences: | |
text = text.replace("\n", "").strip(" ") | |
if text == "": | |
continue | |
lang_token = lang2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
) | |
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) | |
# Decode with Vocos | |
frames = encoded_frames.permute(2, 0, 1) | |
features = vocos.codes_to_features(frames) | |
samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
message = f"Cut into {len(sentences)} sentences" | |
return message, (24000, samples.squeeze(0).cpu().numpy()) | |
elif mode == "sliding-window": | |
complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) | |
original_audio_prompts = audio_prompts | |
original_text_prompts = text_prompts | |
for text in sentences: | |
text = text.replace("\n", "").strip(" ") | |
if text == "": | |
continue | |
lang_token = lang2token[language] | |
lang = token2lang[lang_token] | |
text = lang_token + text + lang_token | |
enroll_x_lens = text_prompts.shape[-1] | |
logging.info(f"synthesize text: {text}") | |
phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
text_tokens, text_tokens_lens = text_collater( | |
[ | |
phone_tokens | |
] | |
) | |
text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
text_tokens_lens += enroll_x_lens | |
# accent control | |
lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
encoded_frames = model.inference( | |
text_tokens.to(device), | |
text_tokens_lens.to(device), | |
audio_prompts, | |
enroll_x_lens=enroll_x_lens, | |
top_k=-100, | |
temperature=1, | |
prompt_language=lang_pr, | |
text_language=langs if accent == "no-accent" else lang, | |
) | |
complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) | |
if torch.rand(1) < 1.0: | |
audio_prompts = encoded_frames[:, :, -NUM_QUANTIZERS:] | |
text_prompts = text_tokens[:, enroll_x_lens:] | |
else: | |
audio_prompts = original_audio_prompts | |
text_prompts = original_text_prompts | |
# Decode with Vocos | |
frames = encoded_frames.permute(2, 0, 1) | |
features = vocos.codes_to_features(frames) | |
samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
message = f"Cut into {len(sentences)} sentences" | |
return message, (24000, samples.squeeze(0).cpu().numpy()) | |
else: | |
raise ValueError(f"No such mode {mode}") | |
def main(): | |
app = gr.Blocks() | |
with app: | |
gr.Markdown(top_md) | |
with gr.Tab("Infer from audio"): | |
gr.Markdown(infer_from_audio_md) | |
with gr.Row(): | |
with gr.Column(): | |
textbox = gr.TextArea(label="Text", | |
placeholder="Type your sentence here", | |
value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input") | |
language_dropdown = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', label='language') | |
accent_dropdown = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent') | |
textbox_transcript = gr.TextArea(label="Transcript", | |
placeholder="Write transcript here. (leave empty to use whisper)", | |
value="", elem_id=f"prompt-name") | |
upload_audio_prompt = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) | |
record_audio_prompt = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) | |
with gr.Column(): | |
text_output = gr.Textbox(label="Message") | |
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
btn = gr.Button("Generate!") | |
btn.click(infer_from_audio, | |
inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript], | |
outputs=[text_output, audio_output]) | |
textbox_mp = gr.TextArea(label="Prompt name", | |
placeholder="Name your prompt here", | |
value="prompt_1", elem_id=f"prompt-name") | |
btn_mp = gr.Button("Make prompt!") | |
prompt_output = gr.File(interactive=False) | |
btn_mp.click(make_npz_prompt, | |
inputs=[textbox_mp, upload_audio_prompt, record_audio_prompt, textbox_transcript], | |
outputs=[text_output, prompt_output]) | |
gr.Examples(examples=infer_from_audio_examples, | |
inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript], | |
outputs=[text_output, audio_output], | |
fn=infer_from_audio, | |
cache_examples=False,) | |
with gr.Tab("Make prompt"): | |
gr.Markdown(make_prompt_md) | |
with gr.Row(): | |
with gr.Column(): | |
textbox2 = gr.TextArea(label="Prompt name", | |
placeholder="Name your prompt here", | |
value="prompt_1", elem_id=f"prompt-name") | |
# 添加选择语言和输入台本的地方 | |
textbox_transcript2 = gr.TextArea(label="Transcript", | |
placeholder="Write transcript here. (leave empty to use whisper)", | |
value="", elem_id=f"prompt-name") | |
upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) | |
record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) | |
with gr.Column(): | |
text_output_2 = gr.Textbox(label="Message") | |
prompt_output_2 = gr.File(interactive=False) | |
btn_2 = gr.Button("Make!") | |
btn_2.click(make_npz_prompt, | |
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], | |
outputs=[text_output_2, prompt_output_2]) | |
gr.Examples(examples=make_npz_prompt_examples, | |
inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], | |
outputs=[text_output_2, prompt_output_2], | |
fn=make_npz_prompt, | |
cache_examples=False,) | |
with gr.Tab("Infer from prompt"): | |
gr.Markdown(infer_from_prompt_md) | |
with gr.Row(): | |
with gr.Column(): | |
textbox_3 = gr.TextArea(label="Text", | |
placeholder="Type your sentence here", | |
value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input") | |
language_dropdown_3 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語', 'Mix'], value='auto-detect', | |
label='language') | |
accent_dropdown_3 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', | |
label='accent') | |
preset_dropdown_3 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') | |
prompt_file = gr.File(file_count='single', file_types=['.npz'], interactive=True) | |
with gr.Column(): | |
text_output_3 = gr.Textbox(label="Message") | |
audio_output_3 = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
btn_3 = gr.Button("Generate!") | |
btn_3.click(infer_from_prompt, | |
inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file], | |
outputs=[text_output_3, audio_output_3]) | |
gr.Examples(examples=infer_from_prompt_examples, | |
inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file], | |
outputs=[text_output_3, audio_output_3], | |
fn=infer_from_prompt, | |
cache_examples=False,) | |
with gr.Tab("Infer long text"): | |
gr.Markdown(long_text_md) | |
with gr.Row(): | |
with gr.Column(): | |
textbox_4 = gr.TextArea(label="Text", | |
placeholder="Type your sentence here", | |
value=long_text_example, elem_id=f"tts-input") | |
language_dropdown_4 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', | |
label='language') | |
accent_dropdown_4 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', | |
label='accent') | |
preset_dropdown_4 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') | |
prompt_file_4 = gr.File(file_count='single', file_types=['.npz'], interactive=True) | |
with gr.Column(): | |
text_output_4 = gr.TextArea(label="Message") | |
audio_output_4 = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
btn_4 = gr.Button("Generate!") | |
btn_4.click(infer_long_text, | |
inputs=[textbox_4, preset_dropdown_4, prompt_file_4, language_dropdown_4, accent_dropdown_4], | |
outputs=[text_output_4, audio_output_4]) | |
app.launch() | |
if __name__ == "__main__": | |
formatter = ( | |
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
) | |
logging.basicConfig(format=formatter, level=logging.INFO) | |
main() |