Change-Your-Style / utils.py
PlanetHades361's picture
Duplicate from deedax/Change-Your-Style
d459f10
from base64 import b64encode
import numpy
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from IPython.display import HTML
from matplotlib import pyplot as plt
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import gdown
import os
torch.manual_seed(1)
logging.set_verbosity_error()
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
if not os.path.exists('models/vae.pt'): vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
if not os.path.exists('models/unet.pt'): unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
if not os.path.exists('models/scheduler.pt'): scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
if not os.path.exists('models/tokenizer.pt'): tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
if not os.path.exists('models/text_encoder.pt'): text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
def download_models():
if not os.path.exists('models/vae.pt'): gdown.download(url = '', output = 'vae.pt')
if not os.path.exists('models/unet.pt'): gdown.download(url = '', output = 'unet.pt')
if not os.path.exists('models/scheduler.pt'): gdown.download(url = '', output = 'scheduler.pt')
if not os.path.exists('models/tokenizer.pt'): gdown.download(url = '', output = 'tokenizer.pt')
if not os.path.exists('models/text_encoder.pt'): gdown.download(url = '', output = 'text_encoder.pt')
def pil_to_latent(input_im):
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1)
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def get_style(style):
learned_emebeds_map = {
'Ghibli': ['<ghibli-face>', 'ghibli'],
'Manga': ['<manga>', 'manga'],
'GTA 5': ['<gta5-artwork>', 'gta'],
'Sims': ['<sims2-portrait>', 'sims'],
'Kaya Ghost Assasin': ['<kaya-ghost-assasin>', 'kaya'],
'Uzumaki': ['<NARUTO>', 'uzumaki'],
'Arcane': ['<arcane-style-jv>', 'arcane']
}
return learned_emebeds_map[style]
def change_style(image, style, inf_steps, guidance, str_step):
input_image = Image.fromarray(image).resize((512, 512))
encoded = pil_to_latent(input_image)
learned_emebed = torch.load('learned_embeds/{}_learned_embeds.bin'.format(get_style(style)[1]))
prompt = 'portrait of a person in the style of temp'
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_embeddings = pos_emb_layer(position_ids)
token_embeddings = token_emb_layer(input_ids)
replacement_token_embedding = learned_emebed[get_style(style)[0]].to(torch_device)
token_embeddings[0, torch.where(input_ids[0]==11097)] = replacement_token_embedding.to(torch_device)
input_embeddings = token_embeddings + position_embeddings
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None,
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True,
return_dict=None,
)
modified_output_embeddings = encoder_outputs[0]
modified_output_embeddings = text_encoder.text_model.final_layer_norm(modified_output_embeddings)
height = 512
width = 512
num_inference_steps = inf_steps
guidance_scale = guidance
generator = torch.manual_seed(32)
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings])
scheduler.set_timesteps(num_inference_steps)
start_step = str_step
start_sigma = scheduler.sigmas[start_step]
noise = torch.randn_like(encoded)
latents = scheduler.add_noise(encoded, noise, timesteps=torch.tensor([scheduler.timesteps[start_step]]))
latents = latents.to(torch_device).float()
for i, t in tqdm(enumerate(scheduler.timesteps)):
if i >= start_step:
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
torch.cuda.empty_cache()
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents).prev_sample
return(latents_to_pil(latents)[0])