Spaces:
Runtime error
Runtime error
from base64 import b64encode | |
import numpy | |
import torch | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel | |
from IPython.display import HTML | |
from matplotlib import pyplot as plt | |
from PIL import Image | |
from torch import autocast | |
from torchvision import transforms as tfms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
import gdown | |
import os | |
torch.manual_seed(1) | |
logging.set_verbosity_error() | |
torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
if not os.path.exists('models/vae.pt'): vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae") | |
if not os.path.exists('models/unet.pt'): unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") | |
if not os.path.exists('models/scheduler.pt'): scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) | |
if not os.path.exists('models/tokenizer.pt'): tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") | |
if not os.path.exists('models/text_encoder.pt'): text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") | |
vae = vae.to(torch_device) | |
text_encoder = text_encoder.to(torch_device) | |
unet = unet.to(torch_device) | |
def download_models(): | |
if not os.path.exists('models/vae.pt'): gdown.download(url = '', output = 'vae.pt') | |
if not os.path.exists('models/unet.pt'): gdown.download(url = '', output = 'unet.pt') | |
if not os.path.exists('models/scheduler.pt'): gdown.download(url = '', output = 'scheduler.pt') | |
if not os.path.exists('models/tokenizer.pt'): gdown.download(url = '', output = 'tokenizer.pt') | |
if not os.path.exists('models/text_encoder.pt'): gdown.download(url = '', output = 'text_encoder.pt') | |
def pil_to_latent(input_im): | |
with torch.no_grad(): | |
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) | |
return 0.18215 * latent.latent_dist.sample() | |
def latents_to_pil(latents): | |
latents = (1 / 0.18215) * latents | |
with torch.no_grad(): | |
image = vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
images = (image * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def get_style(style): | |
learned_emebeds_map = { | |
'Ghibli': ['<ghibli-face>', 'ghibli'], | |
'Manga': ['<manga>', 'manga'], | |
'GTA 5': ['<gta5-artwork>', 'gta'], | |
'Sims': ['<sims2-portrait>', 'sims'], | |
'Kaya Ghost Assasin': ['<kaya-ghost-assasin>', 'kaya'], | |
'Uzumaki': ['<NARUTO>', 'uzumaki'], | |
'Arcane': ['<arcane-style-jv>', 'arcane'] | |
} | |
return learned_emebeds_map[style] | |
def change_style(image, style, inf_steps, guidance, str_step): | |
input_image = Image.fromarray(image).resize((512, 512)) | |
encoded = pil_to_latent(input_image) | |
learned_emebed = torch.load('learned_embeds/{}_learned_embeds.bin'.format(get_style(style)[1])) | |
prompt = 'portrait of a person in the style of temp' | |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
input_ids = text_input.input_ids.to(torch_device) | |
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77] | |
token_emb_layer = text_encoder.text_model.embeddings.token_embedding | |
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding | |
position_embeddings = pos_emb_layer(position_ids) | |
token_embeddings = token_emb_layer(input_ids) | |
replacement_token_embedding = learned_emebed[get_style(style)[0]].to(torch_device) | |
token_embeddings[0, torch.where(input_ids[0]==11097)] = replacement_token_embedding.to(torch_device) | |
input_embeddings = token_embeddings + position_embeddings | |
bsz, seq_len = input_embeddings.shape[:2] | |
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype) | |
encoder_outputs = text_encoder.text_model.encoder( | |
inputs_embeds=input_embeddings, | |
attention_mask=None, | |
causal_attention_mask=causal_attention_mask.to(torch_device), | |
output_attentions=None, | |
output_hidden_states=True, | |
return_dict=None, | |
) | |
modified_output_embeddings = encoder_outputs[0] | |
modified_output_embeddings = text_encoder.text_model.final_layer_norm(modified_output_embeddings) | |
height = 512 | |
width = 512 | |
num_inference_steps = inf_steps | |
guidance_scale = guidance | |
generator = torch.manual_seed(32) | |
batch_size = 1 | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings]) | |
scheduler.set_timesteps(num_inference_steps) | |
start_step = str_step | |
start_sigma = scheduler.sigmas[start_step] | |
noise = torch.randn_like(encoded) | |
latents = scheduler.add_noise(encoded, noise, timesteps=torch.tensor([scheduler.timesteps[start_step]])) | |
latents = latents.to(torch_device).float() | |
for i, t in tqdm(enumerate(scheduler.timesteps)): | |
if i >= start_step: | |
latent_model_input = torch.cat([latents] * 2) | |
sigma = scheduler.sigmas[i] | |
latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
torch.cuda.empty_cache() | |
with torch.no_grad(): | |
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
latents = scheduler.step(noise_pred, t, latents).prev_sample | |
return(latents_to_pil(latents)[0]) | |