Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,445 Bytes
69617e8 f16d803 0b47c5d 69617e8 1101b16 f16d803 1101b16 69617e8 b326bed 1101b16 0b47c5d 69617e8 f16d803 69617e8 f16d803 69617e8 99f3aa9 69617e8 99f3aa9 69617e8 99f3aa9 1101b16 99f3aa9 1101b16 99f3aa9 1101b16 99f3aa9 1101b16 99f3aa9 1101b16 f16d803 0b47c5d f16d803 1101b16 0b47c5d f16d803 0b47c5d f16d803 69617e8 f16d803 69617e8 f16d803 1101b16 69617e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import tempfile
import shutil
import numpy as np
import requests
import google.generativeai as genai
import gradio as gr
import subprocess
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import PIL.Image
from gradio import processing_utils, utils
# Configure Google Gemini API
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
# Play.ht API keys
API_KEY = os.getenv('PLAY_API_KEY')
USER_ID = os.getenv('PLAY_USER_ID')
# Function to upload image to Gemini and get roasted text
def upload_to_gemini(path, mime_type="image/jpeg"):
file = genai.upload_file(path, mime_type=mime_type)
return file
def generate_roast(image_path):
uploaded_file = upload_to_gemini(image_path)
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-1.5-flash-002",
generation_config=generation_config,
system_instruction="You are a professional satirist and fashion expert. Roast the profile picture.",
)
chat_session = model.start_chat(history=[{"role": "user", "parts": [uploaded_file]}])
response = chat_session.send_message("Roast this image!")
return response.text
def text_to_speech(text):
url = "https://api.play.ht/api/v2/tts/stream"
payload = {
"voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json",
"output_format": "mp3",
"text": text,
}
headers = {
"accept": "audio/mpeg",
"content-type": "application/json",
"Authorization": API_KEY,
"X-User-ID": USER_ID
}
response = requests.post(url, json=payload, headers=headers)
if response.status_code == 200:
audio_path = "output_audio.mp3"
with open(audio_path, "wb") as audio_file:
audio_file.write(response.content)
return audio_path
else:
raise ValueError(f"Error: {response.status_code} - {response.text}")
# Generate waveform
def make_waveform(
audio,
bg_color="#f3f4f6",
bg_image=None,
fg_alpha=0.75,
bars_color=("#fbbf24", "#ea580c"),
bar_count=50,
bar_width=0.6,
animate=False
):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import tempfile
import shutil
import PIL.Image
if isinstance(audio, str):
audio = processing_utils.audio_from_file(audio)
duration = round(len(audio[1]) / audio[0], 4)
samples = audio[1]
if len(samples.shape) > 1:
samples = np.mean(samples, 1)
bins_to_pad = bar_count - (len(samples) % bar_count)
samples = np.pad(samples, [(0, bins_to_pad)])
samples = np.reshape(samples, (bar_count, -1))
samples = np.abs(samples)
samples = np.max(samples, 1)
# Color gradient for bars
def hex_to_rgb(hex_str):
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]
def get_color_gradient(c1, c2, n):
c1_rgb = np.array(hex_to_rgb(c1)) / 255
c2_rgb = np.array(hex_to_rgb(c2)) / 255
mix_pcts = [x / (n - 1) for x in range(n)]
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
return [
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item)
for item in rgb_colors
]
color = (
bars_color
if isinstance(bars_color, str)
else get_color_gradient(bars_color[0], bars_color[1], bar_count)
)
fig, ax = plt.subplots(figsize=(5, 1), dpi=200, frameon=False)
fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
plt.axis("off")
plt.margins(x=0)
barcollection = ax.bar(
np.arange(0, bar_count),
samples * 2,
bottom=(-1 * samples),
width=bar_width,
color=color,
alpha=fg_alpha,
)
# Temporary output file
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
savefig_kwargs = {"facecolor": bg_color} if bg_image is None else {"transparent": True}
plt.savefig(tmp_img.name, **savefig_kwargs)
# Use ffmpeg to create video
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
ffmpeg_cmd = [
shutil.which("ffmpeg"),
"-loop", "1",
"-i", tmp_img.name,
"-i", audio,
"-c:v", "libx264",
"-c:a", "aac",
"-shortest",
"-y",
output_video_path,
]
subprocess.run(ffmpeg_cmd, check=True)
return output_video_path
# Full Gradio Interface Function
def process_image(image):
roast_text = generate_roast(image)
audio_path = text_to_speech(roast_text)
final_video_path = make_waveform(audio_path, bg_image=image, animate=True)
return roast_text, final_video_path
# Gradio Blocks UI
with gr.Blocks() as demo:
gr.Markdown("# Image Roast and Waveform Video Generator")
with gr.Row():
image_input = gr.Image(type="filepath", label="Upload Image")
output_text = gr.Textbox(label="Roast Text")
output_video = gr.Video(label="Roast Waveform Video")
submit_button = gr.Button("Generate Roast Video")
submit_button.click(process_image, inputs=image_input, outputs=[output_text, output_video])
# Launch the app
demo.launch(debug=True)
|