Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,212 Bytes
69617e8 1101b16 0ed5bd6 d652179 1101b16 69617e8 b326bed 1101b16 44b7d9c 0ed5bd6 0b47c5d 69617e8 44b7d9c 404f122 44b7d9c 69617e8 0ed5bd6 99f3aa9 44b7d9c 0b47c5d d652179 44b7d9c 750ff0f 44b7d9c d652179 404f122 0ed5bd6 d652179 404f122 69617e8 44b7d9c d92281e 404f122 44b7d9c 404f122 1101b16 69617e8 d652179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import os
import google.generativeai as genai
import gradio as gr
import requests
from moviepy.editor import ImageClip, AudioFileClip
# Configure Google Gemini API
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
# Play.ht API keys
API_KEY = os.getenv('PLAY_API_KEY')
USER_ID = os.getenv('PLAY_USER_ID')
# Theme selection
theme = gr.themes.Base(
primary_hue="emerald",
)
# Function to upload image to Gemini and get roasted text
def upload_to_gemini(path, mime_type="image/jpeg"):
file = genai.upload_file(path, mime_type=mime_type)
return file
def generate_roast(image_path):
try:
uploaded_file = upload_to_gemini(image_path)
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
model = genai.GenerativeModel(
model_name="gemini-1.5-flash-002",
generation_config=generation_config,
system_instruction="You are a professional satirist and fashion expert. Roast the provided profile picture in less than 50 words.",
)
chat_session = model.start_chat(
history=[{"role": "user", "parts": [uploaded_file]}]
)
response = chat_session.send_message("Roast this image!")
return response.text
except Exception as e:
return f"Error generating roast: {e}"
# Function to convert text to speech with Play.ht
def text_to_speech(text):
try:
url = "https://api.play.ht/api/v2/tts/stream"
payload = {
"voice": "s3://voice-cloning-zero-shot/d9ff78ba-d016-47f6-b0ef-dd630f59414e/female-cs/manifest.json",
"output_format": "mp3",
"text": text,
}
headers = {
"accept": "audio/mpeg",
"content-type": "application/json",
"Authorization": API_KEY,
"X-User-ID": USER_ID
}
response = requests.post(url, json=payload, headers=headers)
if response.status_code == 200:
audio_path = "output_audio.mp3"
with open(audio_path, "wb") as audio_file:
audio_file.write(response.content)
return audio_path
else:
return f"Error generating audio: {response.status_code} - {response.text}"
except Exception as e:
return f"Error generating audio: {e}"
# Function to create video from image and audio
def generate_video(image_path, audio_path):
try:
if audio_path is None or "Error" in audio_path:
return "Error generating video: No valid audio file."
#image_clip = ImageClip(image_path).set_duration(AudioFileClip(audio_path).duration)
#audio_clip = AudioFileClip(audio_path)
#video_clip = image_clip.set_audio(audio_clip)
video_output_path = gr.make_waveform((16000, audio_path), bg_image=image_path)
#video_clip.write_videofile(video_output_path, codec="libx264", audio_codec="aac")
return video_output_path
except Exception as e:
return f"Error generating video: {e}"
# Function to process all steps at once
def process_roast(image_path):
roast_text = generate_roast(image_path)
audio_path = text_to_speech(roast_text)
video_path = generate_video(image_path, audio_path)
return roast_text, audio_path, video_path
# Gradio Interface
with gr.Blocks(theme=theme) as demo:
gr.Markdown("# Image Roasting App with TTS and Video")
gr.Markdown("Upload an image, click 'Roast Image', and the AI will roast it, convert the roast to audio, and generate a video.")
with gr.Row():
image_input = gr.Image(type="filepath", label="Upload Image")
with gr.Column():
output_text = gr.Textbox(label="Roast Text")
audio_output = gr.Audio(label="Roast Audio")
video_output = gr.Video(label="Roast Video")
# Single button to handle all actions
roast_button = gr.Button("Roast Image")
roast_button.click(process_roast, inputs=image_input, outputs=[output_text, audio_output, video_output])
# Launch the app
demo.launch(debug=True)
|