File size: 17,021 Bytes
2757816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b777d6
e9582dd
2757816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755875d
 
2757816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b6bf5a
 
2757816
 
3b6bf5a
2757816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import gradio as gr
import bittensor as bt
import typing
from bittensor.extrinsics.serving import get_metadata
from dataclasses import dataclass
import requests
import wandb
import math
import os
import datetime
import time
import functools
import multiprocessing
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm import tqdm

load_dotenv()

FONT = """<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 17 Leaderboard</h1>"""
IMAGE = """<a href="https://discord.gg/bittensor" target="_blank"><img src="https://github.com/PlixML/pixel/raw/master/docs/pixellogo.png" alt="pixellogo" style="margin: auto; width: 3%; border: 0;" /></a>"""
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/PlixAI/pixel-subnet-leaderboard" target="_blank">Subnet 17</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that incentivizes the creation of the best image open models by evaluating submissions on a constant stream of newly generated synthetic MidJourney v6 data. The models with the best <a href="https://github.com/PlixAI/pixel-subnet-leaderboard/blob/master/docs/validator.md" target="_blank">head-to-head loss</a> on the evaluation data receive a steady emission of TAO.</h3>"""
EVALUATION_DETAILS = """<b>Name</b> is the 🤗 Hugging Face model name (click to go to the model card). <b>Rewards / Day</b> are the expected rewards per day for each model. <b>Perplexity</b> is represents the loss on all of the evaluation data for the model as calculated by the validator (lower is better). <b>UID</b> is the Bittensor user id of the submitter. <b>Block</b> is the Bittensor block that the model was submitted in. More stats on <a href="https://taostats.io/subnets/netuid-17/" target="_blank">taostats</a>."""
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by a validator run by Nous Research</h3>"""
VALIDATOR_WANDB_PROJECT = os.environ["VALIDATOR_WANDB_PROJECT"]
H4_TOKEN = os.environ.get("H4_TOKEN", None)
API = HfApi(token=H4_TOKEN)
REPO_ID = "PlixAI/pixel-subnet-leaderboard"
METAGRAPH_RETRIES = 10
METAGRAPH_DELAY_SECS = 30
METADATA_TTL = 10
NETUID = 17
SUBNET_START_BLOCK = 2225782
SECONDS_PER_BLOCK = 12
SUBTENSOR = os.environ.get("SUBTENSOR")

@dataclass
class Competition:
    id: str
    name: str

COMPETITIONS = [Competition(id="m6", name="midjourney-6-sdxl")]
DEFAULT_COMPETITION_ID = "m6"

def run_in_subprocess(func: functools.partial, ttl: int) -> typing.Any:
    """Runs the provided function on a subprocess with 'ttl' seconds to complete.
    Args:
        func (functools.partial): Function to be run.
        ttl (int): How long to try for in seconds.
    Returns:
        Any: The value returned by 'func'
    """

    def wrapped_func(func: functools.partial, queue: multiprocessing.Queue):
        try:
            result = func()
            queue.put(result)
        except (Exception, BaseException) as e:
            # Catch exceptions here to add them to the queue.
            queue.put(e)

    # Use "fork" (the default on all POSIX except macOS), because pickling doesn't seem
    # to work on "spawn".
    ctx = multiprocessing.get_context("fork")
    queue = ctx.Queue()
    process = ctx.Process(target=wrapped_func, args=[func, queue])

    process.start()

    process.join(timeout=ttl)

    if process.is_alive():
        process.terminate()
        process.join()
        raise TimeoutError(f"Failed to {func.func.__name__} after {ttl} seconds")

    # Raises an error if the queue is empty. This is fine. It means our subprocess timed out.
    result = queue.get(block=False)

    # If we put an exception on the queue then raise instead of returning.
    if isinstance(result, Exception):
        raise result
    if isinstance(result, BaseException):
        raise Exception(f"BaseException raised in subprocess: {str(result)}")

    return result


def get_subtensor_and_metagraph() -> typing.Tuple[bt.subtensor, bt.metagraph]:
    for i in range(0, METAGRAPH_RETRIES):
        try:
            print("Connecting to subtensor...")
            subtensor: bt.subtensor = bt.subtensor(SUBTENSOR)
            print("Pulling metagraph...")
            metagraph: bt.metagraph = subtensor.metagraph(NETUID, lite=False)
            return subtensor, metagraph
        except Exception as e:
            print(e)
            if i == METAGRAPH_RETRIES - 1:
                raise
            print(f"Error connecting to subtensor or pulling metagraph, retry {i + 1} of {METAGRAPH_RETRIES} in {METAGRAPH_DELAY_SECS} seconds...")
            time.sleep(METAGRAPH_DELAY_SECS)
    raise RuntimeError()

@dataclass
class ModelData:
    uid: int
    hotkey: str
    namespace: str
    name: str
    commit: str
    hash: str
    block: int
    incentive: float
    emission: float
    competition: str

    @classmethod
    def from_compressed_str(cls, uid: int, hotkey: str, cs: str, block: int, incentive: float, emission: float):
        """Returns an instance of this class from a compressed string representation"""
        tokens = cs.split(":")
        return ModelData(
            uid=uid,
            hotkey=hotkey,
            namespace=tokens[0],
            name=tokens[1],
            commit=tokens[2] if tokens[2] != "None" else "",
            hash=tokens[3] if tokens[3] != "None" else "",
            competition=tokens[4] if len(tokens) > 4 and tokens[4] != "None" else DEFAULT_COMPETITION_ID,
            block=block,
            incentive=incentive,
            emission=emission
        )

def get_tao_price() -> float:
    for i in range(0, METAGRAPH_RETRIES):
        try:
            return float(requests.get("https://api.mexc.com/api/v3/avgPrice?symbol=TAOUSDT").json()["price"])
        except Exception as e:
            print(e)
            if i == METAGRAPH_RETRIES - 1:
                raise
            time.sleep(METAGRAPH_DELAY_SECS)
        raise RuntimeError()

def get_validator_weights(metagraph: bt.metagraph) -> typing.Dict[int, typing.Tuple[float, int, typing.Dict[int, float]]]:
    ret = {}
    for uid in metagraph.uids.tolist():
        vtrust = metagraph.validator_trust[uid].item()
        if vtrust > 0:
            ret[uid] = (vtrust, metagraph.S[uid].item(), {})
            for ouid in metagraph.uids.tolist():
                if ouid == uid:
                    continue
                weight = round(metagraph.weights[uid][ouid].item(), 4)
                if weight > 0:
                    ret[uid][-1][ouid] = weight
    return ret

def get_subnet_data(subtensor: bt.subtensor, metagraph: bt.metagraph) -> typing.List[ModelData]:
    result = []
    for uid in tqdm(metagraph.uids.tolist(), desc="Metadata for hotkeys"):
        hotkey = metagraph.hotkeys[uid]
        try:
            # Wrap calls to the subtensor in a subprocess with a timeout to handle potential hangs.
            partial = functools.partial(get_metadata, subtensor, metagraph.netuid, hotkey)
            metadata = run_in_subprocess(partial, METADATA_TTL)
        except KeyboardInterrupt:
            raise
        except:
            metadata = None
        if not metadata:
            continue

        commitment = metadata["info"]["fields"][0]
        hex_data = commitment[list(commitment.keys())[0]][2:]
        chain_str = bytes.fromhex(hex_data).decode()
        block = metadata["block"]
        incentive = metagraph.incentive[uid].nan_to_num().item()
        emission = metagraph.emission[uid].nan_to_num().item() * 20 # convert to daily TAO

        model_data = None
        try:
            model_data = ModelData.from_compressed_str(uid, hotkey, chain_str, block, incentive, emission)    
        except:
            continue

        result.append(model_data)
    return result

def floatable(x) -> bool:
    return (isinstance(x, float) and not math.isnan(x) and not math.isinf(x)) or isinstance(x, int)
    
def get_float_score(key: str, history, competition_id: str) -> typing.Tuple[typing.Optional[float], bool]:
    if key in history and "competition_id" in history:
        data = list(history[key])
        if len(data) > 0:
            competitions = list(history["competition_id"])
            while True:
                if competitions.pop() != competition_id:
                    data.pop()
                    continue
                if floatable(data[-1]):
                    return float(data[-1]), True
                else:
                    data = [float(x) for x in data if floatable(x)]
                    if len(data) > 0:
                        return float(data[-1]), False
                break
    return None, False

def get_sample(uid, history, competition_id: str) -> typing.Optional[typing.Tuple[str, str, str]]:
    prompt_key = f"sample_prompt_data.{uid}"
    response_key = f"sample_response_data.{uid}"
    truth_key = f"sample_truth_data.{uid}"
    if prompt_key in history and response_key in history and truth_key in history and "competition_id" in history:
        competitions = list(history["competition_id"])
        prompts = list(history[prompt_key])
        responses = list(history[response_key])
        truths = list(history[truth_key])
        while True:
            prompt = prompts.pop()
            response = responses.pop()
            truth = truths.pop()
            if competitions.pop() != competition_id:
                continue
            if isinstance(prompt, str) and isinstance(response, str) and isinstance(truth, str):
                return prompt, response, truth
            break
    return None

def get_scores(uids: typing.List[int], competition_id: str) -> typing.Dict[int, typing.Dict[str, typing.Optional[float | str]]]:
    api = wandb.Api()
    runs = list(api.runs(VALIDATOR_WANDB_PROJECT))

    result = {}
    for run in runs:
        history = run.history()
        for uid in uids:
            if uid in result.keys():
                continue
            perplexity, perplexity_fresh = get_float_score(f"perplexity_data.{uid}", history, competition_id)
            win_rate, win_rate_fresh = get_float_score(f"win_rate_data.{uid}", history, competition_id)
            win_total, win_total_fresh = get_float_score(f"win_total_data.{uid}", history, competition_id)
            weight, weight_fresh = get_float_score(f"weight_data.{uid}", history, competition_id)
            sample = get_sample(uid, history, competition_id)
            result[uid] = {
                "perplexity": perplexity,
                "win_rate": win_rate,
                "win_total": win_total,
                "weight": weight,
                "sample": sample,
                "fresh": perplexity_fresh and win_rate_fresh and win_total_fresh
            }
        if len(result.keys()) == len(uids):
            break
    return result

def format_score(uid, scores, key) -> typing.Optional[float]:
    if uid in scores:
        if key in scores[uid]:
            point = scores[uid][key]
            if floatable(point):
                return round(scores[uid][key], 4)
    return None

def next_tempo(start_block, tempo, block):
    start_num = start_block + tempo
    intervals = (block - start_num) // tempo
    nearest_num = start_num + ((intervals + 1) * tempo)
    return nearest_num

subtensor, metagraph = get_subtensor_and_metagraph()

tao_price = get_tao_price()

leaderboard_df = get_subnet_data(subtensor, metagraph)
leaderboard_df.sort(key=lambda x: x.incentive, reverse=True)

competition_scores = {
    y.id: get_scores([x.uid for x in leaderboard_df if x.competition == y.id], y.id)
    for y in COMPETITIONS
}
    
current_block = metagraph.block.item()
next_update = next_tempo(
    SUBNET_START_BLOCK,
    subtensor.get_subnet_hyperparameters(NETUID).tempo,
    current_block
)
blocks_to_go = next_update - current_block
current_time = datetime.datetime.now()
next_update_time = current_time + datetime.timedelta(seconds=blocks_to_go * SECONDS_PER_BLOCK)

validator_df = get_validator_weights(metagraph)
weight_keys = set()
for uid, stats in validator_df.items():
    weight_keys.update(stats[-1].keys())

def get_next_update():
    now = datetime.datetime.now()
    delta = next_update_time - now
    return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""

def leaderboard_data(show_stale: bool, scores: typing.Dict[int, typing.Dict[str, typing.Optional[float | str]]], competition_id: str):
    value = [
        [
            f'[{c.namespace}/{c.name} ({c.commit[0:8]}, UID={c.uid})](https://huggingface.co/{c.namespace}/{c.name}/commit/{c.commit})',
            format_score(c.uid, scores, "win_rate"),
            format_score(c.uid, scores, "perplexity"),
            format_score(c.uid, scores, "weight"),
            c.uid,
            c.block
        ] for c in leaderboard_df if c.competition == competition_id and (scores[c.uid]["fresh"] or show_stale)
    ]
    return value

demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
    gr.HTML(FONT)
    gr.HTML(TITLE)
    gr.HTML(IMAGE)
    gr.HTML(HEADER)

    gr.HTML(value=get_next_update())

    with gr.Tabs():
        for competition in COMPETITIONS:
            with gr.Tab(competition.name):
                scores = competition_scores[competition.id]
                print(scores)

                class_denominator = sum(leaderboard_df[i].incentive for i in range(len(leaderboard_df)) if i < 10 and leaderboard_df[i].incentive and leaderboard_df[i].competition == competition.id)
                
                class_values = {
                    f"{leaderboard_df[i].namespace}/{leaderboard_df[i].name} ({leaderboard_df[i].commit[0:8]}, UID={leaderboard_df[i].uid}) · ${round(leaderboard_df[i].emission * tao_price, 2):,}{round(leaderboard_df[i].emission, 2):,})": \
                        leaderboard_df[i].incentive / class_denominator for i in range(len(leaderboard_df)) if i < 10 and leaderboard_df[i].incentive and leaderboard_df[i].competition == competition.id
                }

                gr.Label(
                    value=class_values,
                    num_top_classes=10,
                )
                
                with gr.Accordion("Evaluation Stats"):
                    gr.HTML(EVALUATION_HEADER)

                    with gr.Tabs():
                        for entry in leaderboard_df:
                            if entry.competition == competition.id:
                                sample = scores[entry.uid]["sample"]
                                if sample is not None:
                                    name = f"{entry.namespace}/{entry.name} ({entry.commit[0:8]}, UID={entry.uid})"
                                    with gr.Tab(name):
                                        gr.Chatbot([(sample[0], sample[1])])
                                        # gr.Chatbot([(sample[0], f"*{name}*: {sample[1]}"), (None, f"*GPT-4*: {sample[2]}")])

                    show_stale = gr.Checkbox(label="Show Stale", interactive=True)
                    leaderboard_table = gr.components.Dataframe(
                        value=leaderboard_data(show_stale.value, scores, competition.id),
                        headers=["Name", "Win Rate", "Perplexity", "Weight", "UID", "Block"],
                        datatype=["markdown", "number", "number", "number", "number", "number"],
                        elem_id="leaderboard-table",
                        interactive=False,
                        visible=True,
                    )
                    gr.HTML(EVALUATION_DETAILS)
                    show_stale.change(lambda x: leaderboard_data(x, scores, competition.id), [show_stale], leaderboard_table)

    with gr.Accordion("Validator Stats"):
        validator_table = gr.components.Dataframe(
            value=[
                [uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)] + [validator_df[uid][-1].get(c.uid) for c in leaderboard_df if c.incentive]
                for uid, _ in sorted(
                        zip(validator_df.keys(), [validator_df[x][1] for x in validator_df.keys()]),
                        key=lambda x: x[1],
                        reverse=True
                    )
            ],
            headers=["UID", "Stake (τ)", "V-Trust"] + [f"{c.namespace}/{c.name} ({c.commit[0:8]}, UID={c.uid})" for c in leaderboard_df if c.incentive],
            datatype=["number", "number", "number"] + ["number" for c in leaderboard_df if c.incentive],
            interactive=False,
            visible=True,
        )

def restart_space():
    API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=60 * 15) # restart every 15 minutes
scheduler.start()

demo.launch()