Spaces:
Runtime error
Runtime error
File size: 17,021 Bytes
2757816 2b777d6 e9582dd 2757816 755875d 2757816 3b6bf5a 2757816 3b6bf5a 2757816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import gradio as gr
import bittensor as bt
import typing
from bittensor.extrinsics.serving import get_metadata
from dataclasses import dataclass
import requests
import wandb
import math
import os
import datetime
import time
import functools
import multiprocessing
from dotenv import load_dotenv
from huggingface_hub import HfApi
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm import tqdm
load_dotenv()
FONT = """<link href="https://fonts.cdnfonts.com/css/jmh-typewriter" rel="stylesheet">"""
TITLE = """<h1 align="center" id="space-title" class="typewriter">Subnet 17 Leaderboard</h1>"""
IMAGE = """<a href="https://discord.gg/bittensor" target="_blank"><img src="https://github.com/PlixML/pixel/raw/master/docs/pixellogo.png" alt="pixellogo" style="margin: auto; width: 3%; border: 0;" /></a>"""
HEADER = """<h2 align="center" class="typewriter"><a href="https://github.com/PlixAI/pixel-subnet-leaderboard" target="_blank">Subnet 17</a> is a <a href="https://bittensor.com/" target="_blank">Bittensor</a> subnet that incentivizes the creation of the best image open models by evaluating submissions on a constant stream of newly generated synthetic MidJourney v6 data. The models with the best <a href="https://github.com/PlixAI/pixel-subnet-leaderboard/blob/master/docs/validator.md" target="_blank">head-to-head loss</a> on the evaluation data receive a steady emission of TAO.</h3>"""
EVALUATION_DETAILS = """<b>Name</b> is the 🤗 Hugging Face model name (click to go to the model card). <b>Rewards / Day</b> are the expected rewards per day for each model. <b>Perplexity</b> is represents the loss on all of the evaluation data for the model as calculated by the validator (lower is better). <b>UID</b> is the Bittensor user id of the submitter. <b>Block</b> is the Bittensor block that the model was submitted in. More stats on <a href="https://taostats.io/subnets/netuid-17/" target="_blank">taostats</a>."""
EVALUATION_HEADER = """<h3 align="center">Shows the latest internal evaluation statistics as calculated by a validator run by Nous Research</h3>"""
VALIDATOR_WANDB_PROJECT = os.environ["VALIDATOR_WANDB_PROJECT"]
H4_TOKEN = os.environ.get("H4_TOKEN", None)
API = HfApi(token=H4_TOKEN)
REPO_ID = "PlixAI/pixel-subnet-leaderboard"
METAGRAPH_RETRIES = 10
METAGRAPH_DELAY_SECS = 30
METADATA_TTL = 10
NETUID = 17
SUBNET_START_BLOCK = 2225782
SECONDS_PER_BLOCK = 12
SUBTENSOR = os.environ.get("SUBTENSOR")
@dataclass
class Competition:
id: str
name: str
COMPETITIONS = [Competition(id="m6", name="midjourney-6-sdxl")]
DEFAULT_COMPETITION_ID = "m6"
def run_in_subprocess(func: functools.partial, ttl: int) -> typing.Any:
"""Runs the provided function on a subprocess with 'ttl' seconds to complete.
Args:
func (functools.partial): Function to be run.
ttl (int): How long to try for in seconds.
Returns:
Any: The value returned by 'func'
"""
def wrapped_func(func: functools.partial, queue: multiprocessing.Queue):
try:
result = func()
queue.put(result)
except (Exception, BaseException) as e:
# Catch exceptions here to add them to the queue.
queue.put(e)
# Use "fork" (the default on all POSIX except macOS), because pickling doesn't seem
# to work on "spawn".
ctx = multiprocessing.get_context("fork")
queue = ctx.Queue()
process = ctx.Process(target=wrapped_func, args=[func, queue])
process.start()
process.join(timeout=ttl)
if process.is_alive():
process.terminate()
process.join()
raise TimeoutError(f"Failed to {func.func.__name__} after {ttl} seconds")
# Raises an error if the queue is empty. This is fine. It means our subprocess timed out.
result = queue.get(block=False)
# If we put an exception on the queue then raise instead of returning.
if isinstance(result, Exception):
raise result
if isinstance(result, BaseException):
raise Exception(f"BaseException raised in subprocess: {str(result)}")
return result
def get_subtensor_and_metagraph() -> typing.Tuple[bt.subtensor, bt.metagraph]:
for i in range(0, METAGRAPH_RETRIES):
try:
print("Connecting to subtensor...")
subtensor: bt.subtensor = bt.subtensor(SUBTENSOR)
print("Pulling metagraph...")
metagraph: bt.metagraph = subtensor.metagraph(NETUID, lite=False)
return subtensor, metagraph
except Exception as e:
print(e)
if i == METAGRAPH_RETRIES - 1:
raise
print(f"Error connecting to subtensor or pulling metagraph, retry {i + 1} of {METAGRAPH_RETRIES} in {METAGRAPH_DELAY_SECS} seconds...")
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
@dataclass
class ModelData:
uid: int
hotkey: str
namespace: str
name: str
commit: str
hash: str
block: int
incentive: float
emission: float
competition: str
@classmethod
def from_compressed_str(cls, uid: int, hotkey: str, cs: str, block: int, incentive: float, emission: float):
"""Returns an instance of this class from a compressed string representation"""
tokens = cs.split(":")
return ModelData(
uid=uid,
hotkey=hotkey,
namespace=tokens[0],
name=tokens[1],
commit=tokens[2] if tokens[2] != "None" else "",
hash=tokens[3] if tokens[3] != "None" else "",
competition=tokens[4] if len(tokens) > 4 and tokens[4] != "None" else DEFAULT_COMPETITION_ID,
block=block,
incentive=incentive,
emission=emission
)
def get_tao_price() -> float:
for i in range(0, METAGRAPH_RETRIES):
try:
return float(requests.get("https://api.mexc.com/api/v3/avgPrice?symbol=TAOUSDT").json()["price"])
except Exception as e:
print(e)
if i == METAGRAPH_RETRIES - 1:
raise
time.sleep(METAGRAPH_DELAY_SECS)
raise RuntimeError()
def get_validator_weights(metagraph: bt.metagraph) -> typing.Dict[int, typing.Tuple[float, int, typing.Dict[int, float]]]:
ret = {}
for uid in metagraph.uids.tolist():
vtrust = metagraph.validator_trust[uid].item()
if vtrust > 0:
ret[uid] = (vtrust, metagraph.S[uid].item(), {})
for ouid in metagraph.uids.tolist():
if ouid == uid:
continue
weight = round(metagraph.weights[uid][ouid].item(), 4)
if weight > 0:
ret[uid][-1][ouid] = weight
return ret
def get_subnet_data(subtensor: bt.subtensor, metagraph: bt.metagraph) -> typing.List[ModelData]:
result = []
for uid in tqdm(metagraph.uids.tolist(), desc="Metadata for hotkeys"):
hotkey = metagraph.hotkeys[uid]
try:
# Wrap calls to the subtensor in a subprocess with a timeout to handle potential hangs.
partial = functools.partial(get_metadata, subtensor, metagraph.netuid, hotkey)
metadata = run_in_subprocess(partial, METADATA_TTL)
except KeyboardInterrupt:
raise
except:
metadata = None
if not metadata:
continue
commitment = metadata["info"]["fields"][0]
hex_data = commitment[list(commitment.keys())[0]][2:]
chain_str = bytes.fromhex(hex_data).decode()
block = metadata["block"]
incentive = metagraph.incentive[uid].nan_to_num().item()
emission = metagraph.emission[uid].nan_to_num().item() * 20 # convert to daily TAO
model_data = None
try:
model_data = ModelData.from_compressed_str(uid, hotkey, chain_str, block, incentive, emission)
except:
continue
result.append(model_data)
return result
def floatable(x) -> bool:
return (isinstance(x, float) and not math.isnan(x) and not math.isinf(x)) or isinstance(x, int)
def get_float_score(key: str, history, competition_id: str) -> typing.Tuple[typing.Optional[float], bool]:
if key in history and "competition_id" in history:
data = list(history[key])
if len(data) > 0:
competitions = list(history["competition_id"])
while True:
if competitions.pop() != competition_id:
data.pop()
continue
if floatable(data[-1]):
return float(data[-1]), True
else:
data = [float(x) for x in data if floatable(x)]
if len(data) > 0:
return float(data[-1]), False
break
return None, False
def get_sample(uid, history, competition_id: str) -> typing.Optional[typing.Tuple[str, str, str]]:
prompt_key = f"sample_prompt_data.{uid}"
response_key = f"sample_response_data.{uid}"
truth_key = f"sample_truth_data.{uid}"
if prompt_key in history and response_key in history and truth_key in history and "competition_id" in history:
competitions = list(history["competition_id"])
prompts = list(history[prompt_key])
responses = list(history[response_key])
truths = list(history[truth_key])
while True:
prompt = prompts.pop()
response = responses.pop()
truth = truths.pop()
if competitions.pop() != competition_id:
continue
if isinstance(prompt, str) and isinstance(response, str) and isinstance(truth, str):
return prompt, response, truth
break
return None
def get_scores(uids: typing.List[int], competition_id: str) -> typing.Dict[int, typing.Dict[str, typing.Optional[float | str]]]:
api = wandb.Api()
runs = list(api.runs(VALIDATOR_WANDB_PROJECT))
result = {}
for run in runs:
history = run.history()
for uid in uids:
if uid in result.keys():
continue
perplexity, perplexity_fresh = get_float_score(f"perplexity_data.{uid}", history, competition_id)
win_rate, win_rate_fresh = get_float_score(f"win_rate_data.{uid}", history, competition_id)
win_total, win_total_fresh = get_float_score(f"win_total_data.{uid}", history, competition_id)
weight, weight_fresh = get_float_score(f"weight_data.{uid}", history, competition_id)
sample = get_sample(uid, history, competition_id)
result[uid] = {
"perplexity": perplexity,
"win_rate": win_rate,
"win_total": win_total,
"weight": weight,
"sample": sample,
"fresh": perplexity_fresh and win_rate_fresh and win_total_fresh
}
if len(result.keys()) == len(uids):
break
return result
def format_score(uid, scores, key) -> typing.Optional[float]:
if uid in scores:
if key in scores[uid]:
point = scores[uid][key]
if floatable(point):
return round(scores[uid][key], 4)
return None
def next_tempo(start_block, tempo, block):
start_num = start_block + tempo
intervals = (block - start_num) // tempo
nearest_num = start_num + ((intervals + 1) * tempo)
return nearest_num
subtensor, metagraph = get_subtensor_and_metagraph()
tao_price = get_tao_price()
leaderboard_df = get_subnet_data(subtensor, metagraph)
leaderboard_df.sort(key=lambda x: x.incentive, reverse=True)
competition_scores = {
y.id: get_scores([x.uid for x in leaderboard_df if x.competition == y.id], y.id)
for y in COMPETITIONS
}
current_block = metagraph.block.item()
next_update = next_tempo(
SUBNET_START_BLOCK,
subtensor.get_subnet_hyperparameters(NETUID).tempo,
current_block
)
blocks_to_go = next_update - current_block
current_time = datetime.datetime.now()
next_update_time = current_time + datetime.timedelta(seconds=blocks_to_go * SECONDS_PER_BLOCK)
validator_df = get_validator_weights(metagraph)
weight_keys = set()
for uid, stats in validator_df.items():
weight_keys.update(stats[-1].keys())
def get_next_update():
now = datetime.datetime.now()
delta = next_update_time - now
return f"""<div align="center" style="font-size: larger;">Next reward update: <b>{blocks_to_go}</b> blocks (~{int(delta.total_seconds() // 60)} minutes)</div>"""
def leaderboard_data(show_stale: bool, scores: typing.Dict[int, typing.Dict[str, typing.Optional[float | str]]], competition_id: str):
value = [
[
f'[{c.namespace}/{c.name} ({c.commit[0:8]}, UID={c.uid})](https://huggingface.co/{c.namespace}/{c.name}/commit/{c.commit})',
format_score(c.uid, scores, "win_rate"),
format_score(c.uid, scores, "perplexity"),
format_score(c.uid, scores, "weight"),
c.uid,
c.block
] for c in leaderboard_df if c.competition == competition_id and (scores[c.uid]["fresh"] or show_stale)
]
return value
demo = gr.Blocks(css=".typewriter {font-family: 'JMH Typewriter', sans-serif;}")
with demo:
gr.HTML(FONT)
gr.HTML(TITLE)
gr.HTML(IMAGE)
gr.HTML(HEADER)
gr.HTML(value=get_next_update())
with gr.Tabs():
for competition in COMPETITIONS:
with gr.Tab(competition.name):
scores = competition_scores[competition.id]
print(scores)
class_denominator = sum(leaderboard_df[i].incentive for i in range(len(leaderboard_df)) if i < 10 and leaderboard_df[i].incentive and leaderboard_df[i].competition == competition.id)
class_values = {
f"{leaderboard_df[i].namespace}/{leaderboard_df[i].name} ({leaderboard_df[i].commit[0:8]}, UID={leaderboard_df[i].uid}) · ${round(leaderboard_df[i].emission * tao_price, 2):,} (τ{round(leaderboard_df[i].emission, 2):,})": \
leaderboard_df[i].incentive / class_denominator for i in range(len(leaderboard_df)) if i < 10 and leaderboard_df[i].incentive and leaderboard_df[i].competition == competition.id
}
gr.Label(
value=class_values,
num_top_classes=10,
)
with gr.Accordion("Evaluation Stats"):
gr.HTML(EVALUATION_HEADER)
with gr.Tabs():
for entry in leaderboard_df:
if entry.competition == competition.id:
sample = scores[entry.uid]["sample"]
if sample is not None:
name = f"{entry.namespace}/{entry.name} ({entry.commit[0:8]}, UID={entry.uid})"
with gr.Tab(name):
gr.Chatbot([(sample[0], sample[1])])
# gr.Chatbot([(sample[0], f"*{name}*: {sample[1]}"), (None, f"*GPT-4*: {sample[2]}")])
show_stale = gr.Checkbox(label="Show Stale", interactive=True)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_data(show_stale.value, scores, competition.id),
headers=["Name", "Win Rate", "Perplexity", "Weight", "UID", "Block"],
datatype=["markdown", "number", "number", "number", "number", "number"],
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
gr.HTML(EVALUATION_DETAILS)
show_stale.change(lambda x: leaderboard_data(x, scores, competition.id), [show_stale], leaderboard_table)
with gr.Accordion("Validator Stats"):
validator_table = gr.components.Dataframe(
value=[
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)] + [validator_df[uid][-1].get(c.uid) for c in leaderboard_df if c.incentive]
for uid, _ in sorted(
zip(validator_df.keys(), [validator_df[x][1] for x in validator_df.keys()]),
key=lambda x: x[1],
reverse=True
)
],
headers=["UID", "Stake (τ)", "V-Trust"] + [f"{c.namespace}/{c.name} ({c.commit[0:8]}, UID={c.uid})" for c in leaderboard_df if c.incentive],
datatype=["number", "number", "number"] + ["number" for c in leaderboard_df if c.incentive],
interactive=False,
visible=True,
)
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=60 * 15) # restart every 15 minutes
scheduler.start()
demo.launch() |