CoverGen-RVC / src /vc_infer_pipeline.py
Politrees's picture
Upload 29 files
e976963 verified
raw
history blame
21 kB
from functools import lru_cache
import numpy as np, parselmouth, torch, pdb, sys, os
from time import time as ttime
import torch.nn.functional as F
import torchcrepe
from scipy import signal
from torch import Tensor
import pyworld, os, faiss, librosa, torchcrepe
import random
import gc
import re
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
now_dir = os.path.join(BASE_DIR, 'src')
sys.path.append(now_dir)
from infer_pack.predictor.FCPE import FCPEF0Predictor
from infer_pack.predictor.RMVPE import RMVPE
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
input_audio_path2wav = {}
@lru_cache
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
audio = input_audio_path2wav[input_audio_path]
f0, t = pyworld.harvest(
audio,
fs=fs,
f0_ceil=f0max,
f0_floor=f0min,
frame_period=frame_period,
)
f0 = pyworld.stonemask(audio, f0, t, fs)
return f0
def change_rms(data1, sr1, data2, sr2, rate):
rms1 = librosa.feature.rms(y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2)
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
rms1 = torch.from_numpy(rms1)
rms1 = F.interpolate(rms1.unsqueeze(0), size=data2.shape[0], mode="linear").squeeze()
rms2 = torch.from_numpy(rms2)
rms2 = F.interpolate(rms2.unsqueeze(0), size=data2.shape[0], mode="linear").squeeze()
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
data2 *= (torch.pow(rms1, torch.tensor(1 - rate))* torch.pow(rms2, torch.tensor(rate - 1))).numpy()
return data2
class VC(object):
def __init__(self, tgt_sr, config):
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
config.x_pad,
config.x_query,
config.x_center,
config.x_max,
config.is_half,
)
self.sr = 16000
self.window = 160
self.t_pad = self.sr * self.x_pad
self.t_pad_tgt = tgt_sr * self.x_pad
self.t_pad2 = self.t_pad * 2
self.t_query = self.sr * self.x_query
self.t_center = self.sr * self.x_center
self.t_max = self.sr * self.x_max
self.device = config.device
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
if torch.cuda.is_available():
return torch.device(f"cuda:{index % torch.cuda.device_count()}")
elif torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")
def get_f0_crepe_computation(
self,
x,
f0_min,
f0_max,
p_len,
hop_length=160,
model="full",
):
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
torch_device = self.get_optimal_torch_device()
audio = torch.from_numpy(x).to(torch_device, copy=True)
audio = torch.unsqueeze(audio, dim=0)
if audio.ndim == 2 and audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True).detach()
audio = audio.detach()
pitch: Tensor = torchcrepe.predict(
audio,
self.sr,
hop_length,
f0_min,
f0_max,
model,
batch_size=hop_length * 2,
device=torch_device,
pad=True,
)
p_len = p_len or x.shape[0] // hop_length
source = np.array(pitch.squeeze(0).cpu().float().numpy())
source[source < 0.001] = np.nan
target = np.interp(
np.arange(0, len(source) * p_len, len(source)) / p_len,
np.arange(0, len(source)),
source,
)
f0 = np.nan_to_num(target)
return f0
def get_f0_official_crepe_computation(
self,
x,
f0_min,
f0_max,
model="full",
):
batch_size = 512
audio = torch.tensor(np.copy(x))[None].float()
f0, pd = torchcrepe.predict(
audio,
self.sr,
self.window,
f0_min,
f0_max,
model,
batch_size=batch_size,
device=self.device,
return_periodicity=True,
)
pd = torchcrepe.filter.median(pd, 3)
f0 = torchcrepe.filter.mean(f0, 3)
f0[pd < 0.1] = 0
f0 = f0[0].cpu().numpy()
return f0
def get_f0_hybrid_computation(
self,
methods_str,
input_audio_path,
x,
f0_min,
f0_max,
p_len,
filter_radius,
crepe_hop_length,
time_step,
):
methods_str = re.search("hybrid\[(.+)\]", methods_str)
if methods_str:
methods = [method.strip() for method in methods_str.group(1).split("+")]
f0_computation_stack = []
print(f"Calculating f0 pitch estimations for methods {str(methods)}")
x = x.astype(np.float32)
x /= np.quantile(np.abs(x), 0.999)
for method in methods:
f0 = None
if method == "mangio-crepe":
f0 = self.get_f0_crepe_computation(
x, f0_min, f0_max, p_len, crepe_hop_length
)
elif method == "rmvpe":
if hasattr(self, "model_rmvpe") == False:
self.model_rmvpe = RMVPE(
os.path.join(BASE_DIR, 'rvc_models', 'rmvpe.pt'), is_half=self.is_half, device=self.device
)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
f0 = f0[1:]
elif method == "fcpe":
self.model_fcpe = FCPEF0Predictor(
os.path.join(BASE_DIR, 'rvc_models', 'fcpe.pt'),
f0_min=int(f0_min),
f0_max=int(f0_max),
dtype=torch.float32,
device=self.device,
sampling_rate=self.sr,
threshold=0.03,
)
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
del self.model_fcpe
gc.collect()
f0_computation_stack.append(f0)
print(f"Calculating hybrid median f0 from the stack of {str(methods)}")
f0_computation_stack = [fc for fc in f0_computation_stack if fc is not None]
f0_median_hybrid = None
if len(f0_computation_stack) == 1:
f0_median_hybrid = f0_computation_stack[0]
else:
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
return f0_median_hybrid
def get_f0(
self,
input_audio_path,
x,
p_len,
f0_up_key,
f0_method,
filter_radius,
crepe_hop_length,
inp_f0=None,
):
global input_audio_path2wav
time_step = self.window / self.sr * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
if f0_method == "pm":
f0 = (
parselmouth.Sound(x, self.sr)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
elif f0_method == "harvest":
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
if int(filter_radius) > 2:
f0 = signal.medfilt(f0, 3)
elif f0_method == "dio":
f0, t = pyworld.dio(
x.astype(np.double),
fs=self.sr,
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
f0 = signal.medfilt(f0, 3)
elif f0_method == "crepe":
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max)
elif f0_method == "mangio-crepe":
f0 = self.get_f0_crepe_computation(x, f0_min, f0_max, p_len, crepe_hop_length)
elif f0_method == "rmvpe":
if hasattr(self, "model_rmvpe") == False:
self.model_rmvpe = RMVPE(
os.path.join(BASE_DIR, 'rvc_models', 'rmvpe.pt'), is_half=self.is_half, device=self.device
)
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
elif f0_method == "rmvpe+":
params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
'crepe_hop_length': crepe_hop_length, 'model': "full"
}
f0 = self.get_pitch_dependant_rmvpe(**params)
elif f0_method == "fcpe":
self.model_fcpe = FCPEF0Predictor(
os.path.join(BASE_DIR, 'rvc_models', 'fcpe.pt'),
f0_min=int(f0_min),
f0_max=int(f0_max),
dtype=torch.float32,
device=self.device,
sampling_rate=self.sr,
threshold=0.03,
)
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
del self.model_fcpe
gc.collect()
elif "hybrid" in f0_method:
input_audio_path2wav[input_audio_path] = x.astype(np.double)
f0 = self.get_f0_hybrid_computation(
f0_method,
input_audio_path,
x,
f0_min,
f0_max,
p_len,
filter_radius,
crepe_hop_length,
time_step,
)
f0 *= pow(2, f0_up_key / 12)
tf0 = self.sr // self.window
if inp_f0 is not None:
delta_t = np.round(
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
).astype("int16")
replace_f0 = np.interp(
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
)
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
:shape
]
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(int)
return f0_coarse, f0bak
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
if not hasattr(self, "model_rmvpe"):
self.model_rmvpe = RMVPE(
os.path.join(BASE_DIR, 'rvc_models', 'rmvpe.pt'),
is_half=self.is_half,
device=self.device,
)
f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
return f0
def vc(
self,
model,
net_g,
sid,
audio0,
pitch,
pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
):
feats = torch.from_numpy(audio0)
if self.is_half:
feats = feats.half()
else:
feats = feats.float()
if feats.dim() == 2:
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
inputs = {
"source": feats.to(self.device),
"padding_mask": padding_mask,
"output_layer": 9 if version == "v1" else 12,
}
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
if protect < 0.5 and pitch != None and pitchf != None:
feats0 = feats.clone()
if (
isinstance(index, type(None)) == False
and isinstance(big_npy, type(None)) == False
and index_rate != 0
):
npy = feats[0].cpu().numpy()
if self.is_half:
npy = npy.astype("float32")
score, ix = index.search(npy, k=8)
weight = np.square(1 / score)
weight /= weight.sum(axis=1, keepdims=True)
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
if self.is_half:
npy = npy.astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
+ (1 - index_rate) * feats
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if protect < 0.5 and pitch != None and pitchf != None:
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
0, 2, 1
)
t1 = ttime()
p_len = audio0.shape[0] // self.window
if feats.shape[1] < p_len:
p_len = feats.shape[1]
if pitch != None and pitchf != None:
pitch = pitch[:, :p_len]
pitchf = pitchf[:, :p_len]
if protect < 0.5 and pitch != None and pitchf != None:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
p_len = torch.tensor([p_len], device=self.device).long()
with torch.no_grad():
if pitch != None and pitchf != None:
audio1 = (
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0])
.data.cpu()
.float()
.numpy()
)
else:
audio1 = (
(net_g.infer(feats, p_len, sid)[0][0, 0]).data.cpu().float().numpy()
)
del feats, p_len, padding_mask
if torch.cuda.is_available():
torch.cuda.empty_cache()
t2 = ttime()
times[0] += t1 - t0
times[2] += t2 - t1
return audio1
def pipeline(
self,
model,
net_g,
sid,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
crepe_hop_length,
f0_file=None,
):
if file_index != "" and os.path.exists(file_index) == True and index_rate != 0:
try:
index = faiss.read_index(file_index)
big_npy = index.reconstruct_n(0, index.ntotal)
except Exception as error:
print(error)
index = big_npy = None
else:
index = big_npy = None
audio = signal.filtfilt(bh, ah, audio)
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
opt_ts = []
if audio_pad.shape[0] > self.t_max:
audio_sum = np.zeros_like(audio)
for i in range(self.window):
audio_sum += audio_pad[i : i - self.window]
for t in range(self.t_center, audio.shape[0], self.t_center):
opt_ts.append(
t
- self.t_query
+ np.where(
np.abs(audio_sum[t - self.t_query : t + self.t_query])
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
)[0][0]
)
s = 0
audio_opt = []
t = None
t1 = ttime()
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
p_len = audio_pad.shape[0] // self.window
inp_f0 = None
if hasattr(f0_file, "name") == True:
try:
with open(f0_file.name, "r") as f:
lines = f.read().strip("\n").split("\n")
inp_f0 = []
for line in lines:
inp_f0.append([float(i) for i in line.split(",")])
inp_f0 = np.array(inp_f0, dtype="float32")
except Exception as error:
print(error)
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
pitch, pitchf = None, None
if if_f0 == 1:
pitch, pitchf = self.get_f0(
input_audio_path,
audio_pad,
p_len,
f0_up_key,
f0_method,
filter_radius,
crepe_hop_length,
inp_f0,
)
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
if self.device == "mps":
pitchf = pitchf.astype(np.float32)
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
t2 = ttime()
times[1] += t2 - t1
for t in opt_ts:
t = t // self.window * self.window
if if_f0 == 1:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[s : t + self.t_pad2 + self.window],
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[s : t + self.t_pad2 + self.window],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
s = t
if if_f0 == 1:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[t:],
pitch[:, t // self.window :] if t is not None else pitch,
pitchf[:, t // self.window :] if t is not None else pitchf,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
else:
audio_opt.append(
self.vc(
model,
net_g,
sid,
audio_pad[t:],
None,
None,
times,
index,
big_npy,
index_rate,
version,
protect,
)[self.t_pad_tgt : -self.t_pad_tgt]
)
audio_opt = np.concatenate(audio_opt)
if rms_mix_rate != 1:
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
if resample_sr >= 16000 and tgt_sr != resample_sr:
audio_opt = librosa.resample(
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
)
audio_max = np.abs(audio_opt).max() / 0.99
max_int16 = 32768
if audio_max > 1:
max_int16 /= audio_max
audio_opt = (audio_opt * max_int16).astype(np.int16)
del pitch, pitchf, sid
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio_opt