Spaces:
Running
Running
from typing import Union | |
import torch.nn.functional as F | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.nn.utils.parametrizations import weight_norm | |
from torchaudio.transforms import Resample | |
import os | |
import librosa | |
import soundfile as sf | |
import torch.utils.data | |
from librosa.filters import mel as librosa_mel_fn | |
import math | |
from functools import partial | |
from einops import rearrange, repeat | |
from local_attention import LocalAttention | |
from torch import nn | |
os.environ["LRU_CACHE_CAPACITY"] = "3" | |
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False): | |
sampling_rate = None | |
try: | |
data, sampling_rate = sf.read(full_path, always_2d=True) # than soundfile. | |
except Exception as error: | |
print(f"'{full_path}' failed to load with {error}") | |
if return_empty_on_exception: | |
return [], sampling_rate or target_sr or 48000 | |
else: | |
raise Exception(error) | |
if len(data.shape) > 1: | |
data = data[:, 0] | |
assert ( | |
len(data) > 2 | |
) # check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension) | |
if np.issubdtype(data.dtype, np.integer): # if audio data is type int | |
max_mag = -np.iinfo( | |
data.dtype | |
).min # maximum magnitude = min possible value of intXX | |
else: # if audio data is type fp32 | |
max_mag = max(np.amax(data), -np.amin(data)) | |
max_mag = ( | |
(2**31) + 1 | |
if max_mag > (2**15) | |
else ((2**15) + 1 if max_mag > 1.01 else 1.0) | |
) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32 | |
data = torch.FloatTensor(data.astype(np.float32)) / max_mag | |
if ( | |
torch.isinf(data) | torch.isnan(data) | |
).any() and return_empty_on_exception: # resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except | |
return [], sampling_rate or target_sr or 48000 | |
if target_sr is not None and sampling_rate != target_sr: | |
data = torch.from_numpy( | |
librosa.core.resample( | |
data.numpy(), orig_sr=sampling_rate, target_sr=target_sr | |
) | |
) | |
sampling_rate = target_sr | |
return data, sampling_rate | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
class STFT: | |
def __init__( | |
self, | |
sr=22050, | |
n_mels=80, | |
n_fft=1024, | |
win_size=1024, | |
hop_length=256, | |
fmin=20, | |
fmax=11025, | |
clip_val=1e-5, | |
): | |
self.target_sr = sr | |
self.n_mels = n_mels | |
self.n_fft = n_fft | |
self.win_size = win_size | |
self.hop_length = hop_length | |
self.fmin = fmin | |
self.fmax = fmax | |
self.clip_val = clip_val | |
self.mel_basis = {} | |
self.hann_window = {} | |
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False): | |
sampling_rate = self.target_sr | |
n_mels = self.n_mels | |
n_fft = self.n_fft | |
win_size = self.win_size | |
hop_length = self.hop_length | |
fmin = self.fmin | |
fmax = self.fmax | |
clip_val = self.clip_val | |
factor = 2 ** (keyshift / 12) | |
n_fft_new = int(np.round(n_fft * factor)) | |
win_size_new = int(np.round(win_size * factor)) | |
hop_length_new = int(np.round(hop_length * speed)) | |
if not train: | |
mel_basis = self.mel_basis | |
hann_window = self.hann_window | |
else: | |
mel_basis = {} | |
hann_window = {} | |
mel_basis_key = str(fmax) + "_" + str(y.device) | |
if mel_basis_key not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax | |
) | |
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device) | |
keyshift_key = str(keyshift) + "_" + str(y.device) | |
if keyshift_key not in hann_window: | |
hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device) | |
pad_left = (win_size_new - hop_length_new) // 2 | |
pad_right = max( | |
(win_size_new - hop_length_new + 1) // 2, | |
win_size_new - y.size(-1) - pad_left, | |
) | |
if pad_right < y.size(-1): | |
mode = "reflect" | |
else: | |
mode = "constant" | |
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode=mode) | |
y = y.squeeze(1) | |
spec = torch.stft( | |
y, | |
n_fft_new, | |
hop_length=hop_length_new, | |
win_length=win_size_new, | |
window=hann_window[keyshift_key], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9)) | |
if keyshift != 0: | |
size = n_fft // 2 + 1 | |
resize = spec.size(1) | |
if resize < size: | |
spec = F.pad(spec, (0, 0, 0, size - resize)) | |
spec = spec[:, :size, :] * win_size / win_size_new | |
spec = torch.matmul(mel_basis[mel_basis_key], spec) | |
spec = dynamic_range_compression_torch(spec, clip_val=clip_val) | |
return spec | |
def __call__(self, audiopath): | |
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr) | |
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0) | |
return spect | |
stft = STFT() | |
# import fast_transformers.causal_product.causal_product_cuda | |
def softmax_kernel( | |
data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device=None | |
): | |
b, h, *_ = data.shape | |
# (batch size, head, length, model_dim) | |
# normalize model dim | |
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.0 | |
# what is ration?, projection_matrix.shape[0] --> 266 | |
ratio = projection_matrix.shape[0] ** -0.5 | |
projection = repeat(projection_matrix, "j d -> b h j d", b=b, h=h) | |
projection = projection.type_as(data) | |
# data_dash = w^T x | |
data_dash = torch.einsum("...id,...jd->...ij", (data_normalizer * data), projection) | |
# diag_data = D**2 | |
diag_data = data**2 | |
diag_data = torch.sum(diag_data, dim=-1) | |
diag_data = (diag_data / 2.0) * (data_normalizer**2) | |
diag_data = diag_data.unsqueeze(dim=-1) | |
if is_query: | |
data_dash = ratio * ( | |
torch.exp( | |
data_dash | |
- diag_data | |
- torch.max(data_dash, dim=-1, keepdim=True).values | |
) | |
+ eps | |
) | |
else: | |
data_dash = ratio * ( | |
torch.exp(data_dash - diag_data + eps) | |
) # - torch.max(data_dash)) + eps) | |
return data_dash.type_as(data) | |
def orthogonal_matrix_chunk(cols, qr_uniform_q=False, device=None): | |
unstructured_block = torch.randn((cols, cols), device=device) | |
q, r = torch.linalg.qr(unstructured_block.cpu(), mode="reduced") | |
q, r = map(lambda t: t.to(device), (q, r)) | |
# proposed by @Parskatt | |
# to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf | |
if qr_uniform_q: | |
d = torch.diag(r, 0) | |
q *= d.sign() | |
return q.t() | |
def exists(val): | |
return val is not None | |
def empty(tensor): | |
return tensor.numel() == 0 | |
def default(val, d): | |
return val if exists(val) else d | |
def cast_tuple(val): | |
return (val,) if not isinstance(val, tuple) else val | |
class PCmer(nn.Module): | |
"""The encoder that is used in the Transformer model.""" | |
def __init__( | |
self, | |
num_layers, | |
num_heads, | |
dim_model, | |
dim_keys, | |
dim_values, | |
residual_dropout, | |
attention_dropout, | |
): | |
super().__init__() | |
self.num_layers = num_layers | |
self.num_heads = num_heads | |
self.dim_model = dim_model | |
self.dim_values = dim_values | |
self.dim_keys = dim_keys | |
self.residual_dropout = residual_dropout | |
self.attention_dropout = attention_dropout | |
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)]) | |
# METHODS ######################################################################################################## | |
def forward(self, phone, mask=None): | |
# apply all layers to the input | |
for i, layer in enumerate(self._layers): | |
phone = layer(phone, mask) | |
# provide the final sequence | |
return phone | |
# ==================================================================================================================== # | |
# CLASS _ E N C O D E R L A Y E R # | |
# ==================================================================================================================== # | |
class _EncoderLayer(nn.Module): | |
"""One layer of the encoder. | |
Attributes: | |
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence. | |
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism. | |
""" | |
def __init__(self, parent: PCmer): | |
"""Creates a new instance of ``_EncoderLayer``. | |
Args: | |
parent (Encoder): The encoder that the layers is created for. | |
""" | |
super().__init__() | |
self.conformer = ConformerConvModule(parent.dim_model) | |
self.norm = nn.LayerNorm(parent.dim_model) | |
self.dropout = nn.Dropout(parent.residual_dropout) | |
# selfatt -> fastatt: performer! | |
self.attn = SelfAttention( | |
dim=parent.dim_model, heads=parent.num_heads, causal=False | |
) | |
# METHODS ######################################################################################################## | |
def forward(self, phone, mask=None): | |
# compute attention sub-layer | |
phone = phone + (self.attn(self.norm(phone), mask=mask)) | |
phone = phone + (self.conformer(phone)) | |
return phone | |
def calc_same_padding(kernel_size): | |
pad = kernel_size // 2 | |
return (pad, pad - (kernel_size + 1) % 2) | |
# helper classes | |
class Swish(nn.Module): | |
def forward(self, x): | |
return x * x.sigmoid() | |
class Transpose(nn.Module): | |
def __init__(self, dims): | |
super().__init__() | |
assert len(dims) == 2, "dims must be a tuple of two dimensions" | |
self.dims = dims | |
def forward(self, x): | |
return x.transpose(*self.dims) | |
class GLU(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.dim = dim | |
def forward(self, x): | |
out, gate = x.chunk(2, dim=self.dim) | |
return out * gate.sigmoid() | |
class DepthWiseConv1d(nn.Module): | |
def __init__(self, chan_in, chan_out, kernel_size, padding): | |
super().__init__() | |
self.padding = padding | |
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups=chan_in) | |
def forward(self, x): | |
x = F.pad(x, self.padding) | |
return self.conv(x) | |
class ConformerConvModule(nn.Module): | |
def __init__( | |
self, dim, causal=False, expansion_factor=2, kernel_size=31, dropout=0.0 | |
): | |
super().__init__() | |
inner_dim = dim * expansion_factor | |
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0) | |
self.net = nn.Sequential( | |
nn.LayerNorm(dim), | |
Transpose((1, 2)), | |
nn.Conv1d(dim, inner_dim * 2, 1), | |
GLU(dim=1), | |
DepthWiseConv1d( | |
inner_dim, inner_dim, kernel_size=kernel_size, padding=padding | |
), | |
# nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(), | |
Swish(), | |
nn.Conv1d(inner_dim, dim, 1), | |
Transpose((1, 2)), | |
nn.Dropout(dropout), | |
) | |
def forward(self, x): | |
return self.net(x) | |
def linear_attention(q, k, v): | |
if v is None: | |
out = torch.einsum("...ed,...nd->...ne", k, q) | |
return out | |
else: | |
k_cumsum = k.sum(dim=-2) | |
# k_cumsum = k.sum(dim = -2) | |
D_inv = 1.0 / (torch.einsum("...nd,...d->...n", q, k_cumsum.type_as(q)) + 1e-8) | |
context = torch.einsum("...nd,...ne->...de", k, v) | |
out = torch.einsum("...de,...nd,...n->...ne", context, q, D_inv) | |
return out | |
def gaussian_orthogonal_random_matrix( | |
nb_rows, nb_columns, scaling=0, qr_uniform_q=False, device=None | |
): | |
nb_full_blocks = int(nb_rows / nb_columns) | |
block_list = [] | |
for _ in range(nb_full_blocks): | |
q = orthogonal_matrix_chunk( | |
nb_columns, qr_uniform_q=qr_uniform_q, device=device | |
) | |
block_list.append(q) | |
remaining_rows = nb_rows - nb_full_blocks * nb_columns | |
if remaining_rows > 0: | |
q = orthogonal_matrix_chunk( | |
nb_columns, qr_uniform_q=qr_uniform_q, device=device | |
) | |
block_list.append(q[:remaining_rows]) | |
final_matrix = torch.cat(block_list) | |
if scaling == 0: | |
multiplier = torch.randn((nb_rows, nb_columns), device=device).norm(dim=1) | |
elif scaling == 1: | |
multiplier = math.sqrt((float(nb_columns))) * torch.ones( | |
(nb_rows,), device=device | |
) | |
else: | |
raise ValueError(f"Invalid scaling {scaling}") | |
return torch.diag(multiplier) @ final_matrix | |
class FastAttention(nn.Module): | |
def __init__( | |
self, | |
dim_heads, | |
nb_features=None, | |
ortho_scaling=0, | |
causal=False, | |
generalized_attention=False, | |
kernel_fn=nn.ReLU(), | |
qr_uniform_q=False, | |
no_projection=False, | |
): | |
super().__init__() | |
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads))) | |
self.dim_heads = dim_heads | |
self.nb_features = nb_features | |
self.ortho_scaling = ortho_scaling | |
self.create_projection = partial( | |
gaussian_orthogonal_random_matrix, | |
nb_rows=self.nb_features, | |
nb_columns=dim_heads, | |
scaling=ortho_scaling, | |
qr_uniform_q=qr_uniform_q, | |
) | |
projection_matrix = self.create_projection() | |
self.register_buffer("projection_matrix", projection_matrix) | |
self.generalized_attention = generalized_attention | |
self.kernel_fn = kernel_fn | |
# if this is turned on, no projection will be used | |
# queries and keys will be softmax-ed as in the original efficient attention paper | |
self.no_projection = no_projection | |
self.causal = causal | |
def redraw_projection_matrix(self): | |
projections = self.create_projection() | |
self.projection_matrix.copy_(projections) | |
del projections | |
def forward(self, q, k, v): | |
device = q.device | |
if self.no_projection: | |
q = q.softmax(dim=-1) | |
k = torch.exp(k) if self.causal else k.softmax(dim=-2) | |
else: | |
create_kernel = partial( | |
softmax_kernel, projection_matrix=self.projection_matrix, device=device | |
) | |
q = create_kernel(q, is_query=True) | |
k = create_kernel(k, is_query=False) | |
attn_fn = linear_attention if not self.causal else self.causal_linear_fn | |
if v is None: | |
out = attn_fn(q, k, None) | |
return out | |
else: | |
out = attn_fn(q, k, v) | |
return out | |
class SelfAttention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
causal=False, | |
heads=8, | |
dim_head=64, | |
local_heads=0, | |
local_window_size=256, | |
nb_features=None, | |
feature_redraw_interval=1000, | |
generalized_attention=False, | |
kernel_fn=nn.ReLU(), | |
qr_uniform_q=False, | |
dropout=0.0, | |
no_projection=False, | |
): | |
super().__init__() | |
assert dim % heads == 0, "dimension must be divisible by number of heads" | |
dim_head = default(dim_head, dim // heads) | |
inner_dim = dim_head * heads | |
self.fast_attention = FastAttention( | |
dim_head, | |
nb_features, | |
causal=causal, | |
generalized_attention=generalized_attention, | |
kernel_fn=kernel_fn, | |
qr_uniform_q=qr_uniform_q, | |
no_projection=no_projection, | |
) | |
self.heads = heads | |
self.global_heads = heads - local_heads | |
self.local_attn = ( | |
LocalAttention( | |
window_size=local_window_size, | |
causal=causal, | |
autopad=True, | |
dropout=dropout, | |
look_forward=int(not causal), | |
rel_pos_emb_config=(dim_head, local_heads), | |
) | |
if local_heads > 0 | |
else None | |
) | |
self.to_q = nn.Linear(dim, inner_dim) | |
self.to_k = nn.Linear(dim, inner_dim) | |
self.to_v = nn.Linear(dim, inner_dim) | |
self.to_out = nn.Linear(inner_dim, dim) | |
self.dropout = nn.Dropout(dropout) | |
def redraw_projection_matrix(self): | |
self.fast_attention.redraw_projection_matrix() | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
context_mask=None, | |
name=None, | |
inference=False, | |
**kwargs, | |
): | |
_, _, _, h, gh = *x.shape, self.heads, self.global_heads | |
cross_attend = exists(context) | |
context = default(context, x) | |
context_mask = default(context_mask, mask) if not cross_attend else context_mask | |
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) | |
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v)) | |
attn_outs = [] | |
if not empty(q): | |
if exists(context_mask): | |
global_mask = context_mask[:, None, :, None] | |
v.masked_fill_(~global_mask, 0.0) | |
if cross_attend: | |
pass | |
else: | |
out = self.fast_attention(q, k, v) | |
attn_outs.append(out) | |
if not empty(lq): | |
assert ( | |
not cross_attend | |
), "local attention is not compatible with cross attention" | |
out = self.local_attn(lq, lk, lv, input_mask=mask) | |
attn_outs.append(out) | |
out = torch.cat(attn_outs, dim=1) | |
out = rearrange(out, "b h n d -> b n (h d)") | |
out = self.to_out(out) | |
return self.dropout(out) | |
def l2_regularization(model, l2_alpha): | |
l2_loss = [] | |
for module in model.modules(): | |
if type(module) is nn.Conv2d: | |
l2_loss.append((module.weight**2).sum() / 2.0) | |
return l2_alpha * sum(l2_loss) | |
class FCPE(nn.Module): | |
def __init__( | |
self, | |
input_channel=128, | |
out_dims=360, | |
n_layers=12, | |
n_chans=512, | |
use_siren=False, | |
use_full=False, | |
loss_mse_scale=10, | |
loss_l2_regularization=False, | |
loss_l2_regularization_scale=1, | |
loss_grad1_mse=False, | |
loss_grad1_mse_scale=1, | |
f0_max=1975.5, | |
f0_min=32.70, | |
confidence=False, | |
threshold=0.05, | |
use_input_conv=True, | |
): | |
super().__init__() | |
if use_siren is True: | |
raise ValueError("Siren is not supported yet.") | |
if use_full is True: | |
raise ValueError("Full model is not supported yet.") | |
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10 | |
self.loss_l2_regularization = ( | |
loss_l2_regularization if (loss_l2_regularization is not None) else False | |
) | |
self.loss_l2_regularization_scale = ( | |
loss_l2_regularization_scale | |
if (loss_l2_regularization_scale is not None) | |
else 1 | |
) | |
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False | |
self.loss_grad1_mse_scale = ( | |
loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1 | |
) | |
self.f0_max = f0_max if (f0_max is not None) else 1975.5 | |
self.f0_min = f0_min if (f0_min is not None) else 32.70 | |
self.confidence = confidence if (confidence is not None) else False | |
self.threshold = threshold if (threshold is not None) else 0.05 | |
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True | |
self.cent_table_b = torch.Tensor( | |
np.linspace( | |
self.f0_to_cent(torch.Tensor([f0_min]))[0], | |
self.f0_to_cent(torch.Tensor([f0_max]))[0], | |
out_dims, | |
) | |
) | |
self.register_buffer("cent_table", self.cent_table_b) | |
# conv in stack | |
_leaky = nn.LeakyReLU() | |
self.stack = nn.Sequential( | |
nn.Conv1d(input_channel, n_chans, 3, 1, 1), | |
nn.GroupNorm(4, n_chans), | |
_leaky, | |
nn.Conv1d(n_chans, n_chans, 3, 1, 1), | |
) | |
# transformer | |
self.decoder = PCmer( | |
num_layers=n_layers, | |
num_heads=8, | |
dim_model=n_chans, | |
dim_keys=n_chans, | |
dim_values=n_chans, | |
residual_dropout=0.1, | |
attention_dropout=0.1, | |
) | |
self.norm = nn.LayerNorm(n_chans) | |
# out | |
self.n_out = out_dims | |
self.dense_out = weight_norm(nn.Linear(n_chans, self.n_out)) | |
def forward( | |
self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder="local_argmax" | |
): | |
""" | |
input: | |
B x n_frames x n_unit | |
return: | |
dict of B x n_frames x feat | |
""" | |
if cdecoder == "argmax": | |
self.cdecoder = self.cents_decoder | |
elif cdecoder == "local_argmax": | |
self.cdecoder = self.cents_local_decoder | |
if self.use_input_conv: | |
x = self.stack(mel.transpose(1, 2)).transpose(1, 2) | |
else: | |
x = mel | |
x = self.decoder(x) | |
x = self.norm(x) | |
x = self.dense_out(x) # [B,N,D] | |
x = torch.sigmoid(x) | |
if not infer: | |
gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1] | |
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim] | |
loss_all = self.loss_mse_scale * F.binary_cross_entropy( | |
x, gt_cent_f0 | |
) # bce loss | |
# l2 regularization | |
if self.loss_l2_regularization: | |
loss_all = loss_all + l2_regularization( | |
model=self, l2_alpha=self.loss_l2_regularization_scale | |
) | |
x = loss_all | |
if infer: | |
x = self.cdecoder(x) | |
x = self.cent_to_f0(x) | |
if not return_hz_f0: | |
x = (1 + x / 700).log() | |
return x | |
def cents_decoder(self, y, mask=True): | |
B, N, _ = y.size() | |
ci = self.cent_table[None, None, :].expand(B, N, -1) | |
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum( | |
y, dim=-1, keepdim=True | |
) # cents: [B,N,1] | |
if mask: | |
confident = torch.max(y, dim=-1, keepdim=True)[0] | |
confident_mask = torch.ones_like(confident) | |
confident_mask[confident <= self.threshold] = float("-INF") | |
rtn = rtn * confident_mask | |
if self.confidence: | |
return rtn, confident | |
else: | |
return rtn | |
def cents_local_decoder(self, y, mask=True): | |
B, N, _ = y.size() | |
ci = self.cent_table[None, None, :].expand(B, N, -1) | |
confident, max_index = torch.max(y, dim=-1, keepdim=True) | |
local_argmax_index = torch.arange(0, 9).to(max_index.device) + (max_index - 4) | |
local_argmax_index[local_argmax_index < 0] = 0 | |
local_argmax_index[local_argmax_index >= self.n_out] = self.n_out - 1 | |
ci_l = torch.gather(ci, -1, local_argmax_index) | |
y_l = torch.gather(y, -1, local_argmax_index) | |
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum( | |
y_l, dim=-1, keepdim=True | |
) # cents: [B,N,1] | |
if mask: | |
confident_mask = torch.ones_like(confident) | |
confident_mask[confident <= self.threshold] = float("-INF") | |
rtn = rtn * confident_mask | |
if self.confidence: | |
return rtn, confident | |
else: | |
return rtn | |
def cent_to_f0(self, cent): | |
return 10.0 * 2 ** (cent / 1200.0) | |
def f0_to_cent(self, f0): | |
return 1200.0 * torch.log2(f0 / 10.0) | |
def gaussian_blurred_cent(self, cents): # cents: [B,N,1] | |
mask = (cents > 0.1) & (cents < (1200.0 * np.log2(self.f0_max / 10.0))) | |
B, N, _ = cents.size() | |
ci = self.cent_table[None, None, :].expand(B, N, -1) | |
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float() | |
class FCPEInfer: | |
def __init__(self, model_path, device=None, dtype=torch.float32): | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.device = device | |
ckpt = torch.load(model_path, map_location=torch.device(self.device)) | |
self.args = DotDict(ckpt["config"]) | |
self.dtype = dtype | |
model = FCPE( | |
input_channel=self.args.model.input_channel, | |
out_dims=self.args.model.out_dims, | |
n_layers=self.args.model.n_layers, | |
n_chans=self.args.model.n_chans, | |
use_siren=self.args.model.use_siren, | |
use_full=self.args.model.use_full, | |
loss_mse_scale=self.args.loss.loss_mse_scale, | |
loss_l2_regularization=self.args.loss.loss_l2_regularization, | |
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, | |
loss_grad1_mse=self.args.loss.loss_grad1_mse, | |
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, | |
f0_max=self.args.model.f0_max, | |
f0_min=self.args.model.f0_min, | |
confidence=self.args.model.confidence, | |
) | |
model.to(self.device).to(self.dtype) | |
model.load_state_dict(ckpt["model"]) | |
model.eval() | |
self.model = model | |
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device) | |
def __call__(self, audio, sr, threshold=0.05): | |
self.model.threshold = threshold | |
audio = audio[None, :] | |
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype) | |
f0 = self.model(mel=mel, infer=True, return_hz_f0=True) | |
return f0 | |
class Wav2Mel: | |
def __init__(self, args, device=None, dtype=torch.float32): | |
# self.args = args | |
self.sampling_rate = args.mel.sampling_rate | |
self.hop_size = args.mel.hop_size | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.device = device | |
self.dtype = dtype | |
self.stft = STFT( | |
args.mel.sampling_rate, | |
args.mel.num_mels, | |
args.mel.n_fft, | |
args.mel.win_size, | |
args.mel.hop_size, | |
args.mel.fmin, | |
args.mel.fmax, | |
) | |
self.resample_kernel = {} | |
def extract_nvstft(self, audio, keyshift=0, train=False): | |
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose( | |
1, 2 | |
) # B, n_frames, bins | |
return mel | |
def extract_mel(self, audio, sample_rate, keyshift=0, train=False): | |
audio = audio.to(self.dtype).to(self.device) | |
# resample | |
if sample_rate == self.sampling_rate: | |
audio_res = audio | |
else: | |
key_str = str(sample_rate) | |
if key_str not in self.resample_kernel: | |
self.resample_kernel[key_str] = Resample( | |
sample_rate, self.sampling_rate, lowpass_filter_width=128 | |
) | |
self.resample_kernel[key_str] = ( | |
self.resample_kernel[key_str].to(self.dtype).to(self.device) | |
) | |
audio_res = self.resample_kernel[key_str](audio) | |
# extract | |
mel = self.extract_nvstft( | |
audio_res, keyshift=keyshift, train=train | |
) # B, n_frames, bins | |
n_frames = int(audio.shape[1] // self.hop_size) + 1 | |
if n_frames > int(mel.shape[1]): | |
mel = torch.cat((mel, mel[:, -1:, :]), 1) | |
if n_frames < int(mel.shape[1]): | |
mel = mel[:, :n_frames, :] | |
return mel | |
def __call__(self, audio, sample_rate, keyshift=0, train=False): | |
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train) | |
class DotDict(dict): | |
def __getattr__(*args): | |
val = dict.get(*args) | |
return DotDict(val) if type(val) is dict else val | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |
class F0Predictor(object): | |
def compute_f0(self, wav, p_len): | |
""" | |
input: wav:[signal_length] | |
p_len:int | |
output: f0:[signal_length//hop_length] | |
""" | |
pass | |
def compute_f0_uv(self, wav, p_len): | |
""" | |
input: wav:[signal_length] | |
p_len:int | |
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length] | |
""" | |
pass | |
class FCPEF0Predictor(F0Predictor): | |
def __init__( | |
self, | |
model_path, | |
hop_length=512, | |
f0_min=50, | |
f0_max=1100, | |
dtype=torch.float32, | |
device=None, | |
sampling_rate=44100, | |
threshold=0.05, | |
): | |
self.fcpe = FCPEInfer(model_path, device=device, dtype=dtype) | |
self.hop_length = hop_length | |
self.f0_min = f0_min | |
self.f0_max = f0_max | |
if device is None: | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
else: | |
self.device = device | |
self.threshold = threshold | |
self.sampling_rate = sampling_rate | |
self.dtype = dtype | |
self.name = "fcpe" | |
def repeat_expand( | |
self, | |
content: Union[torch.Tensor, np.ndarray], | |
target_len: int, | |
mode: str = "nearest", | |
): | |
ndim = content.ndim | |
if content.ndim == 1: | |
content = content[None, None] | |
elif content.ndim == 2: | |
content = content[None] | |
assert content.ndim == 3 | |
is_np = isinstance(content, np.ndarray) | |
if is_np: | |
content = torch.from_numpy(content) | |
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode) | |
if is_np: | |
results = results.numpy() | |
if ndim == 1: | |
return results[0, 0] | |
elif ndim == 2: | |
return results[0] | |
def post_process(self, x, sampling_rate, f0, pad_to): | |
if isinstance(f0, np.ndarray): | |
f0 = torch.from_numpy(f0).float().to(x.device) | |
if pad_to is None: | |
return f0 | |
f0 = self.repeat_expand(f0, pad_to) | |
vuv_vector = torch.zeros_like(f0) | |
vuv_vector[f0 > 0.0] = 1.0 | |
vuv_vector[f0 <= 0.0] = 0.0 | |
# 去掉0频率, 并线性插值 | |
nzindex = torch.nonzero(f0).squeeze() | |
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy() | |
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy() | |
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate | |
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0] | |
if f0.shape[0] <= 0: | |
return ( | |
torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), | |
vuv_vector.cpu().numpy(), | |
) | |
if f0.shape[0] == 1: | |
return ( | |
torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0] | |
).cpu().numpy(), vuv_vector.cpu().numpy() | |
# 大概可以用 torch 重写? | |
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) | |
# vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0)) | |
return f0, vuv_vector.cpu().numpy() | |
def compute_f0(self, wav, p_len=None): | |
x = torch.FloatTensor(wav).to(self.dtype).to(self.device) | |
if p_len is None: | |
print("fcpe p_len is None") | |
p_len = x.shape[0] // self.hop_length | |
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0] | |
if torch.all(f0 == 0): | |
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) | |
return rtn, rtn | |
return self.post_process(x, self.sampling_rate, f0, p_len)[0] | |
def compute_f0_uv(self, wav, p_len=None): | |
x = torch.FloatTensor(wav).to(self.dtype).to(self.device) | |
if p_len is None: | |
p_len = x.shape[0] // self.hop_length | |
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)[0, :, 0] | |
if torch.all(f0 == 0): | |
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len) | |
return rtn, rtn | |
return self.post_process(x, self.sampling_rate, f0, p_len) | |