File size: 4,815 Bytes
a32fce8
 
 
 
 
 
 
 
 
 
 
da8a52a
a32fce8
 
 
 
 
da8a52a
8580fe4
 
 
 
 
 
 
 
 
da8a52a
a32fce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8a52a
a32fce8
 
 
 
 
 
 
 
 
 
 
 
da8a52a
4b5b890
 
a32fce8
da8a52a
 
8580fe4
a32fce8
288e4c5
 
 
3c4358b
 
5e8dc51
3c4358b
 
5e8dc51
3c4358b
 
 
 
 
 
 
 
4b5b890
 
 
 
a32fce8
da8a52a
 
a32fce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from datetime import datetime
import gradio as gr
import hopsworks
import joblib
import pandas as pd
import numpy as np

project = hopsworks.login()
fs = project.get_feature_store()

mr = project.get_model_registry()
model = mr.get_model("heart_model_v1", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/heart_model.pkl")
preprocessing_pipeline = joblib.load(model_dir + "/preprocessing_pipeline.pkl")
print("Model downloaded")

def impute(df):
    _, numerical_pipeline, numerical = preprocessing_pipeline.transformers_[0]
    _, categorical_pipeline, categorical = preprocessing_pipeline.transformers_[1]

    numerical_imputer = numerical_pipeline.named_steps['imputer']
    categorical_imputer = categorical_pipeline.named_steps['imputer']

    df[numerical] = numerical_imputer.transform(df[numerical])
    df[categorical] = categorical_imputer.transform(df[categorical])

    return df

def predict(df):
    df = preprocessing_pipeline.transform(df)
    prediction = model.predict(df)
    return prediction[0]

def heart(heartdisease, smoking, alcoholdrinking, stroke, diffwalking, sex, agecategory, race, diabetic, physicalactivity, genhealth, asthma, kidneydisease, skincancer, mentalhealth, physicalhealth, sleeptime, bmi):
    df = pd.DataFrame({
        'smoking': [smoking],
        'alcohol_drinking': [alcoholdrinking],
        'stroke': [stroke],
        'diff_walking': [diffwalking],
        'sex': [sex],
        'age_category': [agecategory],
        'race': [race],
        'diabetic': [diabetic],
        'physical_activity': [physicalactivity],
        'gen_health': [genhealth],
        'asthma': [asthma],
        'kidney_disease': [kidneydisease],
        'skin_cancer': [skincancer],
        'b_m_i': [bmi],
        'mental_health': [mentalhealth],
        'physical_health': [physicalhealth],
        'sleep_time': [sleeptime],
    })

    # Replace Unknowns with NaNs
    # Feature pipeline has an imputer
    df = df.replace('Unknown', np.nan)
        
    store_data = False

    if heartdisease != "Unknown":
        df = impute(df)

        df['heart_disease'] = np.float64(heartdisease == "Yes")
        df['timestamp'] = pd.to_datetime(datetime.now())
        # Hacky fix due to Hopsworks Magic
        df["timestamp"] = df['timestamp'] - pd.to_timedelta(0 * df.index, unit='s')
        
        # heart_fg = fs.get_feature_group(name="heart", version=1)
        heart_fg = fs.get_or_create_feature_group(
        name="heart_user_dataset",
        version=1,
        primary_key=df.columns,
        description="Heart Dataset of User Input Values",
        event_time="timestamp",
        )

        try:
            heart_fg.insert(df, write_options={"wait_for_job": False})
        except Exception as e:
            print(f"An error occurred: {e}")

        store_data = True
    
    if store_data:
        return "Thank you for submitting your data. We will use it to improve our model."

    pred = predict(df)

    if not pred:
        return "We predict that you do NOT have heart disease. (But this is not medical advice!)"
    else:
        return "We predict that you MIGHT have heart disease. (But this is not medical advice!)"

demo = gr.Interface(
    fn=heart,
    title="Heart Disease Predictive Analytics",
    description="Experiment with different heart configurations.",
    allow_flagging="never",
inputs=[
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Heart Disease (TARGET)"),
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Smoking"),
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Alcohol Drinking"),
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Stroke"),
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Diff Walking"),
    gr.Dropdown(['Unknown', 'Female', 'Male'], label="Sex"),
    gr.Dropdown(['Unknown', '18-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80 or older'], label="Age Category"),
    gr.Dropdown(['Unknown', 'American Indian/Alaskan Native', 'Asian', 'Black', 'Hispanic', 'Other', 'White'], label="Race"),
    gr.Dropdown(['Unknown', 'No', 'No, borderline diabetes', 'Yes', 'Yes (during pregnancy)'], label="Diabetic"),
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Physical Activity"),
    gr.Dropdown(['Unknown', 'Poor', 'Fair', 'Good', 'Very good', 'Excellent'], label="General Health"),
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Asthma"),
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Kidney Disease"),
    gr.Dropdown(['Unknown', 'No', 'Yes'], label="Skin Cancer"),
    gr.Number(label="Mental Health", minimum=0, maximum=30),
    gr.Number(label="Physical Health", minimum=0, maximum=30),
    gr.Number(label="Sleep Time", minimum=1, maximum=24),
    gr.Number(label="BMI"),
],
    outputs="text")

demo.launch(debug=True)