Spaces:
Runtime error
Runtime error
adding faiss
Browse files
app.py
CHANGED
@@ -1,5 +1,24 @@
|
|
1 |
|
2 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
st.header('kadhalTensor', divider='red')
|
@@ -11,11 +30,22 @@ with st.form("my_form"):
|
|
11 |
st.write("What do want to know about sangam era's love?")
|
12 |
|
13 |
question_input = st.text_input("")
|
|
|
|
|
14 |
|
15 |
|
16 |
# Every form must have a submit button.
|
17 |
submitted = st.form_submit_button("Submit")
|
18 |
if submitted:
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
st.write("Outside the form")
|
|
|
1 |
|
2 |
import streamlit as st
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from flashrank import Ranker, RerankRequest
|
6 |
+
|
7 |
+
|
8 |
+
@st.cache
|
9 |
+
def get_embeddings():
|
10 |
+
model_name = "BAAI/bge-large-en-v1.5"
|
11 |
+
model_kwargs = {'device': 'cpu',"trust_remote_code":True}
|
12 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute caosine similarity
|
13 |
+
model = HuggingFaceEmbeddings(
|
14 |
+
model_name=model_name,
|
15 |
+
model_kwargs=model_kwargs,
|
16 |
+
encode_kwargs=encode_kwargs,)
|
17 |
+
return model
|
18 |
+
|
19 |
+
baai_embeddings = get_embeddings()
|
20 |
+
kadhal_Server = FAISS.from_local("./",baai_embeddings)
|
21 |
+
ranker = Ranker(model_name="ms-marco-MiniLM-L-12-v2", cache_dir="/opt")
|
22 |
|
23 |
|
24 |
st.header('kadhalTensor', divider='red')
|
|
|
30 |
st.write("What do want to know about sangam era's love?")
|
31 |
|
32 |
question_input = st.text_input("")
|
33 |
+
|
34 |
+
|
35 |
|
36 |
|
37 |
# Every form must have a submit button.
|
38 |
submitted = st.form_submit_button("Submit")
|
39 |
if submitted:
|
40 |
+
|
41 |
+
docs = kadhal_Server.similarity_search(question_input)
|
42 |
+
tobeReranked = [{"text":doc.page_content , "metadata":doc.metadata} for doc in docs]
|
43 |
+
rerankInput = RerankRequest(
|
44 |
+
passages=tobeReranked,
|
45 |
+
query=" take care of our loved ones accorting to thirukkural?",)
|
46 |
+
reranked = ranker.rerank(rerankInput)
|
47 |
+
|
48 |
+
reranked_top = reranked[0:2]
|
49 |
+
st.write(reranked_top)
|
50 |
|
51 |
st.write("Outside the form")
|