import streamlit as st import os from langchain_groq import ChatGroq from langchain_openai import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain.chains import create_retrieval_chain from langchain_community.vectorstores import FAISS from langchain_community.document_loaders import PyPDFDirectoryLoader from dotenv import load_dotenv load_dotenv() ## load the GROQ And OpenAI API KEY os.environ['OPENAI_API_KEY']=os.getenv("OPENAI_API_KEY") groq_api_key=os.getenv('GROQ_API_KEY') st.title("Chatgroq With Llama3 Demo") llm=ChatGroq(groq_api_key=groq_api_key, model_name="Llama3-8b-8192") prompt=ChatPromptTemplate.from_template( """ Answer the questions based on the provided context only. Please provide the most accurate response based on the question {context} Questions:{input} """ ) def vector_embedding(): if "vectors" not in st.session_state: st.session_state.embeddings=OpenAIEmbeddings() st.session_state.loader=PyPDFDirectoryLoader("./us_census") ## Data Ingestion st.session_state.docs=st.session_state.loader.load() ## Document Loading st.session_state.text_splitter=RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200) ## Chunk Creation st.session_state.final_documents=st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) #splitting st.session_state.vectors=FAISS.from_documents(st.session_state.final_documents,st.session_state.embeddings) #vector OpenAI embeddings prompt1=st.text_input("Enter Your Question From Doduments") if st.button("Documents Embedding"): vector_embedding() st.write("Vector Store DB Is Ready") import time if prompt1: document_chain=create_stuff_documents_chain(llm,prompt) retriever=st.session_state.vectors.as_retriever() retrieval_chain=create_retrieval_chain(retriever,document_chain) start=time.process_time() response=retrieval_chain.invoke({'input':prompt1}) print("Response time :",time.process_time()-start) st.write(response['answer']) # With a streamlit expander with st.expander("Document Similarity Search"): # Find the relevant chunks for i, doc in enumerate(response["context"]): st.write(doc.page_content) st.write("--------------------------------")