File size: 4,751 Bytes
d7fc8f2
67674ef
 
 
 
 
901e1bd
 
 
 
d7fc8f2
 
67674ef
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
d7fc8f2
67674ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1db41be
67674ef
 
 
 
 
 
d7fc8f2
 
67674ef
d7fc8f2
 
67674ef
 
 
d7fc8f2
 
 
 
 
 
 
 
 
67674ef
d7fc8f2
 
 
 
 
88dba4e
d7fc8f2
 
 
 
67674ef
 
 
 
 
 
 
 
 
d7fc8f2
 
 
 
 
 
 
 
 
 
67674ef
d7fc8f2
67674ef
 
 
 
 
 
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
d7fc8f2
67674ef
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
acda4f6
 
 
 
d7fc8f2
 
 
67674ef
d7fc8f2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import replicate
from openai import OpenAI
from PIL import Image
import requests
from io import BytesIO
import os

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN')


def generate_image_openai(prompt):

    client = OpenAI()
    response = client.images.generate(
        model="dall-e-3",
        prompt=prompt,
        size="1024x1024",
        n=1,
    )

    return response.data[0].url, response.data[0].revised_prompt

def style_transfer(input_image_path, style_image_path, revised_prompt):
    input = {
        # "image": open(input_image_path, "rb"),
        "image": input_image_path,
        "image_style": open(style_image_path, "rb"),
        "style_strength": 0.4,
        "structure_strength":1.2,
        "prompt": " natural light, natural bright colors, low quality, candid, grainy, instagram photo, phone camera, candid, blurry home video, high iso noisy" ,
        "seed": 42,
    }
    output = replicate.run(
        "prakharsaxena24/2d-to-real-style:c0e1e612a11a13d1d57a6d647e7665ad850bc73715337c1f499bb7b52404c35a",
        input=input
    )
    return output[0]



def infer(text,title):

    prompt = f"""Please create a simple suitable image to accompany the following text as part of an article with the title "{title}". The objects in the image must have realistic proportions. Text: "{text}" 
     Please make sure not to include text in the image."""
    image_url_openai, revised_prompt = generate_image_openai(prompt)
    style_image_url = style_transfer(image_url_openai, f'./Style.png',revised_prompt)
    response = requests.get(style_image_url)
    img = Image.open(BytesIO(response.content))

    return img
    
    
    
    


examples = [
    # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    # "An astronaut riding a green horse",
    # "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""



with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image and style transfer.
        """)
        
        with gr.Row():
            
            text = gr.Text(
                label="Text",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            title = gr.Text(
                label="Title",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        # with gr.Accordion("Advanced Settings", open=False):
            
        #     negative_prompt = gr.Text(
        #         label="Negative prompt",
        #         max_lines=1,
        #         placeholder="Enter a negative prompt",
        #         visible=False,
        #     )
            
        #     seed = gr.Slider(
        #         label="Seed",
        #         minimum=0,
        #         maximum=100000,
        #         step=1,
        #         value=0,
        #     )
            
        #     randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
        #     with gr.Row():
                
        #         width = gr.Slider(
        #             label="Width",
        #             minimum=256,
        #             maximum=MAX_IMAGE_SIZE,
        #             step=32,
        #             value=512,
        #         )
                
        #         height = gr.Slider(
        #             label="Height",
        #             minimum=256,
        #             maximum=MAX_IMAGE_SIZE,
        #             step=32,
        #             value=512,
        #         )
            
        #     with gr.Row():
                
        #         guidance_scale = gr.Slider(
        #             label="Guidance scale",
        #             minimum=0.0,
        #             maximum=10.0,
        #             step=0.1,
        #             value=0.0,
        #         )
                
        #         num_inference_steps = gr.Slider(
        #             label="Number of inference steps",
        #             minimum=1,
        #             maximum=12,
        #             step=1,
        #             value=2,
        #         )
        
        # gr.Examples(
        #     examples = examples,
        #     inputs = [prompt]
        # )

    run_button.click(
        fn = infer,
        inputs = [text, title],
        outputs = [result]
    )

demo.queue().launch()