Spaces:
Running
Running
File size: 4,751 Bytes
d7fc8f2 67674ef 901e1bd d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef 1db41be 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 88dba4e d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 acda4f6 d7fc8f2 67674ef d7fc8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
import replicate
from openai import OpenAI
from PIL import Image
import requests
from io import BytesIO
import os
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN')
def generate_image_openai(prompt):
client = OpenAI()
response = client.images.generate(
model="dall-e-3",
prompt=prompt,
size="1024x1024",
n=1,
)
return response.data[0].url, response.data[0].revised_prompt
def style_transfer(input_image_path, style_image_path, revised_prompt):
input = {
# "image": open(input_image_path, "rb"),
"image": input_image_path,
"image_style": open(style_image_path, "rb"),
"style_strength": 0.4,
"structure_strength":1.2,
"prompt": " natural light, natural bright colors, low quality, candid, grainy, instagram photo, phone camera, candid, blurry home video, high iso noisy" ,
"seed": 42,
}
output = replicate.run(
"prakharsaxena24/2d-to-real-style:c0e1e612a11a13d1d57a6d647e7665ad850bc73715337c1f499bb7b52404c35a",
input=input
)
return output[0]
def infer(text,title):
prompt = f"""Please create a simple suitable image to accompany the following text as part of an article with the title "{title}". The objects in the image must have realistic proportions. Text: "{text}"
Please make sure not to include text in the image."""
image_url_openai, revised_prompt = generate_image_openai(prompt)
style_image_url = style_transfer(image_url_openai, f'./Style.png',revised_prompt)
response = requests.get(style_image_url)
img = Image.open(BytesIO(response.content))
return img
examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image and style transfer.
""")
with gr.Row():
text = gr.Text(
label="Text",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
title = gr.Text(
label="Title",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=100000,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512,
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512,
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0,
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=12,
# step=1,
# value=2,
# )
# gr.Examples(
# examples = examples,
# inputs = [prompt]
# )
run_button.click(
fn = infer,
inputs = [text, title],
outputs = [result]
)
demo.queue().launch() |