File size: 7,054 Bytes
d7fc8f2
67674ef
 
 
 
 
901e1bd
 
 
 
d7fc8f2
 
67674ef
d7fc8f2
67674ef
 
9585c73
67674ef
9585c73
 
67674ef
 
d7fc8f2
67674ef
d7fc8f2
45f69a5
67674ef
 
 
 
 
 
45f69a5
 
67674ef
45f69a5
67674ef
e0289b1
 
 
 
 
 
 
 
67674ef
e0289b1
 
67674ef
64e6a59
2b8867a
 
64e6a59
45f69a5
 
2b8867a
 
3ed6ca8
 
 
 
2b8867a
3ed6ca8
 
 
 
 
 
 
2b8867a
45f69a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e6a59
45f69a5
 
2b8867a
67674ef
 
 
 
3e6eb71
67674ef
 
45f69a5
 
 
2a85922
 
8d3fe03
2b8867a
 
67674ef
 
2a85922
67674ef
 
d7fc8f2
 
67674ef
d7fc8f2
 
67674ef
 
 
d7fc8f2
 
2a85922
 
 
 
 
 
d7fc8f2
67674ef
d7fc8f2
69093c4
d7fc8f2
 
 
88dba4e
d7fc8f2
 
 
 
67674ef
 
 
 
2a85922
67674ef
 
 
 
d7fc8f2
 
2a85922
d7fc8f2
 
 
 
 
2a85922
d7fc8f2
 
67674ef
d7fc8f2
67674ef
 
 
 
 
 
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
d7fc8f2
67674ef
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
67674ef
 
 
 
 
 
 
d7fc8f2
acda4f6
 
 
 
d7fc8f2
 
 
67674ef
2a85922
d7fc8f2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
import replicate
from openai import OpenAI
from PIL import Image
import requests
from io import BytesIO
import os

OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN')


def generate_image_openai(prompt):

    client = OpenAI()
    response = client.images.generate(
        model="dall-e-3",
        prompt=prompt,
        size="1024x1024",
        # size="512x512",
        n=1,
    )

    return response.data[0].url, response.data[0].revised_prompt

def style_transfer(input_image_path, style_image_path, prompt_det):
    input = {
        # "image": open(input_image_path, "rb"),
        "image": input_image_path,
        "image_style": open(style_image_path, "rb"),
        "style_strength": 0.4,
        "structure_strength":1.2,
        "negative_prompt": "hands, fingers, feet, legs, shoes",
        "prompt": " natural light, natural bright colors, low quality, candid, grainy, instagram photo, phone camera, high iso noisy "+prompt_det ,
        "seed": 42,
        "guidance_scale": 5
    }
    # output = replicate.run(
    #     # "prakharsaxena24/2d-to-real-style:fef4d74fb7d11df35aa4bbdf3d8671b4d0352464dc67b169968393c657ab6038",
    #     input=input
    # )
    # return output[0]
    deployment = replicate.deployments.get("2clicksmedia/my-app-photorealism")
    prediction = deployment.predictions.create(
      input=input
    )
    prediction.wait()
    return prediction.output[0]

def upscale_image(image_path, prompt_det):
    input = {
        "image": image_path,
        "prompt": "candid photo, high iso, phone camera, grainy <lora:more_details:0.5> , symmetric hands " + prompt_det,
        "scale_factor": 3,
        "negative_prompt": "hands, fingers, feet, legs, shoes",

    }
    output = replicate.run(
        "philz1337x/clarity-upscaler:eba39f520856d5e61a8ad56fd57f97be2fa30de65e29d8e94db5209a1827cd59",
        # "prakharsaxena24/calrity-upscaler-private",
        input=input)
    
    return output[0]
    # deployment = replicate.deployments.get("2clicksmedia/upscaler")
    # prediction = deployment.predictions.create(
    #   input=input
    # )
    # prediction.wait()
    # return prediction.output[0]

def get_keyword_prompt(image_url):
    client = OpenAI()
    response = client.chat.completions.create(
    model="gpt-4o",
    messages=[
        {
        "role": "user",
        "content": [
            {"type": "text", "text": "Describe this image in detail, using phrases or keywords separated by commas. Include details about the person such as gender, race, and appearance excluding details about hair color, footwear. Indicate the position left or right. Keep it short and provide the information in one paragraph, separated by commas."},
            {
            "type": "image_url",
            "image_url": {
                "url": image_url,
            },
            },
        ],
        }
    ],
    # max_tokens=300,
    )
    # print(response)
    return response.choices[0].message.content




def infer(text,title):

    prompt = f"""Please create a simple suitable image to accompany the following text as part of an article with the title "{title}". The objects in the image must have realistic proportions, always keep people/person in focus, and keep the colors warm, try to keep it simple with few objects/concepts. Text: "{text}" 
     Please make sure not to include text in the image."""
    image_url_openai, revised_prompt = generate_image_openai(prompt)
    prompt_det = get_keyword_prompt(image_url_openai)
    style_image_url = style_transfer(image_url_openai, f'./Style.png',prompt_det)
    upscaled_image_url = upscale_image(style_image_url, prompt_det)

    response_dalle = requests.get(image_url_openai)
    dalle_img = Image.open(BytesIO(response_dalle.content))
    
    response = requests.get(upscaled_image_url)
    img = Image.open(BytesIO(response.content))

    return dalle_img, img
    
    
    
    


examples = [
    # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    # "An astronaut riding a green horse",
    # "A delicious ceviche cheesecake slice",
]

# css="""
# #col-container {
#     margin: 0 auto;
#     max-width: 520px;
# }
# """



with gr.Blocks() as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image and style transfer.
        """)
        
        with gr.Row():
            
            text = gr.Text(
                label="Text",
                show_label=False,
                max_lines=1,
                placeholder="Enter the `text`",
                container=False,
            )
            title = gr.Text(
                label="Title",
                show_label=False,
                max_lines=1,
                placeholder="Enter the `title`",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        dalle = gr.Image(label="dalle", show_label=False)
        result = gr.Image(label="Result", show_label=False)

        # with gr.Accordion("Advanced Settings", open=False):
            
        #     negative_prompt = gr.Text(
        #         label="Negative prompt",
        #         max_lines=1,
        #         placeholder="Enter a negative prompt",
        #         visible=False,
        #     )
            
        #     seed = gr.Slider(
        #         label="Seed",
        #         minimum=0,
        #         maximum=100000,
        #         step=1,
        #         value=0,
        #     )
            
        #     randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
        #     with gr.Row():
                
        #         width = gr.Slider(
        #             label="Width",
        #             minimum=256,
        #             maximum=MAX_IMAGE_SIZE,
        #             step=32,
        #             value=512,
        #         )
                
        #         height = gr.Slider(
        #             label="Height",
        #             minimum=256,
        #             maximum=MAX_IMAGE_SIZE,
        #             step=32,
        #             value=512,
        #         )
            
        #     with gr.Row():
                
        #         guidance_scale = gr.Slider(
        #             label="Guidance scale",
        #             minimum=0.0,
        #             maximum=10.0,
        #             step=0.1,
        #             value=0.0,
        #         )
                
        #         num_inference_steps = gr.Slider(
        #             label="Number of inference steps",
        #             minimum=1,
        #             maximum=12,
        #             step=1,
        #             value=2,
        #         )
        
        # gr.Examples(
        #     examples = examples,
        #     inputs = [prompt]
        # )

    run_button.click(
        fn = infer,
        inputs = [text, title],
        outputs = [dalle,result]
    )

demo.queue().launch()