Spaces:
Sleeping
Sleeping
File size: 7,054 Bytes
d7fc8f2 67674ef 901e1bd d7fc8f2 67674ef d7fc8f2 67674ef 9585c73 67674ef 9585c73 67674ef d7fc8f2 67674ef d7fc8f2 45f69a5 67674ef 45f69a5 67674ef 45f69a5 67674ef e0289b1 67674ef e0289b1 67674ef 64e6a59 2b8867a 64e6a59 45f69a5 2b8867a 3ed6ca8 2b8867a 3ed6ca8 2b8867a 45f69a5 64e6a59 45f69a5 2b8867a 67674ef 3e6eb71 67674ef 45f69a5 2a85922 8d3fe03 2b8867a 67674ef 2a85922 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 2a85922 d7fc8f2 67674ef d7fc8f2 69093c4 d7fc8f2 88dba4e d7fc8f2 67674ef 2a85922 67674ef d7fc8f2 2a85922 d7fc8f2 2a85922 d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 67674ef d7fc8f2 acda4f6 d7fc8f2 67674ef 2a85922 d7fc8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import replicate
from openai import OpenAI
from PIL import Image
import requests
from io import BytesIO
import os
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN')
def generate_image_openai(prompt):
client = OpenAI()
response = client.images.generate(
model="dall-e-3",
prompt=prompt,
size="1024x1024",
# size="512x512",
n=1,
)
return response.data[0].url, response.data[0].revised_prompt
def style_transfer(input_image_path, style_image_path, prompt_det):
input = {
# "image": open(input_image_path, "rb"),
"image": input_image_path,
"image_style": open(style_image_path, "rb"),
"style_strength": 0.4,
"structure_strength":1.2,
"negative_prompt": "hands, fingers, feet, legs, shoes",
"prompt": " natural light, natural bright colors, low quality, candid, grainy, instagram photo, phone camera, high iso noisy "+prompt_det ,
"seed": 42,
"guidance_scale": 5
}
# output = replicate.run(
# # "prakharsaxena24/2d-to-real-style:fef4d74fb7d11df35aa4bbdf3d8671b4d0352464dc67b169968393c657ab6038",
# input=input
# )
# return output[0]
deployment = replicate.deployments.get("2clicksmedia/my-app-photorealism")
prediction = deployment.predictions.create(
input=input
)
prediction.wait()
return prediction.output[0]
def upscale_image(image_path, prompt_det):
input = {
"image": image_path,
"prompt": "candid photo, high iso, phone camera, grainy <lora:more_details:0.5> , symmetric hands " + prompt_det,
"scale_factor": 3,
"negative_prompt": "hands, fingers, feet, legs, shoes",
}
output = replicate.run(
"philz1337x/clarity-upscaler:eba39f520856d5e61a8ad56fd57f97be2fa30de65e29d8e94db5209a1827cd59",
# "prakharsaxena24/calrity-upscaler-private",
input=input)
return output[0]
# deployment = replicate.deployments.get("2clicksmedia/upscaler")
# prediction = deployment.predictions.create(
# input=input
# )
# prediction.wait()
# return prediction.output[0]
def get_keyword_prompt(image_url):
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image in detail, using phrases or keywords separated by commas. Include details about the person such as gender, race, and appearance excluding details about hair color, footwear. Indicate the position left or right. Keep it short and provide the information in one paragraph, separated by commas."},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
},
],
}
],
# max_tokens=300,
)
# print(response)
return response.choices[0].message.content
def infer(text,title):
prompt = f"""Please create a simple suitable image to accompany the following text as part of an article with the title "{title}". The objects in the image must have realistic proportions, always keep people/person in focus, and keep the colors warm, try to keep it simple with few objects/concepts. Text: "{text}"
Please make sure not to include text in the image."""
image_url_openai, revised_prompt = generate_image_openai(prompt)
prompt_det = get_keyword_prompt(image_url_openai)
style_image_url = style_transfer(image_url_openai, f'./Style.png',prompt_det)
upscaled_image_url = upscale_image(style_image_url, prompt_det)
response_dalle = requests.get(image_url_openai)
dalle_img = Image.open(BytesIO(response_dalle.content))
response = requests.get(upscaled_image_url)
img = Image.open(BytesIO(response.content))
return dalle_img, img
examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
]
# css="""
# #col-container {
# margin: 0 auto;
# max-width: 520px;
# }
# """
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image and style transfer.
""")
with gr.Row():
text = gr.Text(
label="Text",
show_label=False,
max_lines=1,
placeholder="Enter the `text`",
container=False,
)
title = gr.Text(
label="Title",
show_label=False,
max_lines=1,
placeholder="Enter the `title`",
container=False,
)
run_button = gr.Button("Run", scale=0)
dalle = gr.Image(label="dalle", show_label=False)
result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=100000,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512,
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512,
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0,
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=12,
# step=1,
# value=2,
# )
# gr.Examples(
# examples = examples,
# inputs = [prompt]
# )
run_button.click(
fn = infer,
inputs = [text, title],
outputs = [dalle,result]
)
demo.queue().launch() |