import gradio as gr import replicate from openai import OpenAI from PIL import Image import requests from io import BytesIO import os OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN') def generate_image_openai(prompt): client = OpenAI() response = client.images.generate( model="dall-e-3", prompt=prompt, size="1024x1024", n=1, ) return response.data[0].url, response.data[0].revised_prompt def style_transfer(input_image_path, style_image_path, revised_prompt): input = { # "image": open(input_image_path, "rb"), "image": input_image_path, "image_style": open(style_image_path, "rb"), "style_strength": 0.4, "structure_strength":1.2, "prompt": " natural light, natural bright colors, low quality, candid, grainy, instagram photo, phone camera, candid, blurry home video, high iso noisy" , "seed": 42, } output = replicate.run( "prakharsaxena24/2d-to-real-style:c0e1e612a11a13d1d57a6d647e7665ad850bc73715337c1f499bb7b52404c35a", input=input ) return output[0] def infer(text,title): prompt = f"""Please create a simple suitable image to accompany the following text as part of an article with the title "{title}". The objects in the image must have realistic proportions. Text: "{text}" Please make sure not to include text in the image.""" image_url_openai, revised_prompt = generate_image_openai(prompt) style_image_url = style_transfer(image_url_openai, f'./Style.png',revised_prompt) response = requests.get(style_image_url) img = Image.open(BytesIO(response.content)) return img examples = [ # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", # "An astronaut riding a green horse", # "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image and style transfer. """) with gr.Row(): text = gr.Text( label="Text", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) title = gr.Text( label="Title", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) # with gr.Accordion("Advanced Settings", open=False): # negative_prompt = gr.Text( # label="Negative prompt", # max_lines=1, # placeholder="Enter a negative prompt", # visible=False, # ) # seed = gr.Slider( # label="Seed", # minimum=0, # maximum=100000, # step=1, # value=0, # ) # randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # with gr.Row(): # width = gr.Slider( # label="Width", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=512, # ) # height = gr.Slider( # label="Height", # minimum=256, # maximum=MAX_IMAGE_SIZE, # step=32, # value=512, # ) # with gr.Row(): # guidance_scale = gr.Slider( # label="Guidance scale", # minimum=0.0, # maximum=10.0, # step=0.1, # value=0.0, # ) # num_inference_steps = gr.Slider( # label="Number of inference steps", # minimum=1, # maximum=12, # step=1, # value=2, # ) # gr.Examples( # examples = examples, # inputs = [prompt] # ) run_button.click( fn = infer, inputs = [text, title], outputs = [result] ) demo.queue().launch()