import os import gradio as gr from openai import OpenAI import pprint import chromadb from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction # Load environment variables client = OpenAI(api_key=os.getenv("OPENAI_KEY")) pp = pprint.PrettyPrinter(indent=4) current_id = 0 chat_history = [] chat_metadata = [] history_ids = [] def generate_response(messages): model_name = os.getenv("MODEL_NAME") response = client.chat.completions.create(model=model_name, messages=messages, temperature=0.5, max_tokens=250) print("Request:") pp.pprint(messages) print(f"Completion tokens: {response.usage.completion_tokens}, Prompt tokens: {response.usage.prompt_tokens}, Total tokens: {response.usage.total_tokens}") return response.choices[0].message def chat_interface(user_input): global current_id chroma_client = chromadb.Client() embedding_function = OpenAIEmbeddingFunction(api_key=os.getenv("OPENAI_KEY"), model_name=os.getenv("EMBEDDING_MODEL")) collection = chroma_client.create_collection(name="conversations", embedding_function=embedding_function) messages = [{"role": "system", "content": "You are a kind and friendly chatbot"}] results = collection.query(query_texts=[user_input], n_results=2) for res in results['documents'][0]: messages.append({"role": "user", "content": f"previous chat: {res}"}) messages.append({"role": "user", "content": user_input}) response = generate_response(messages) chat_metadata.append({"role":"user"}) chat_history.append(user_input) chat_metadata.append({"role":"assistant"}) chat_history.append(response.content) current_id += 1 history_ids.append(f"id_{current_id}") current_id += 1 history_ids.append(f"id_{current_id}") collection.add( documents=chat_history, metadatas=chat_metadata, ids=history_ids ) return response.content def main(): interface = gr.Interface(fn=chat_interface, inputs="text", outputs="text", title="Chatbot Interface") interface.launch() if __name__ == "__main__": main()