Spaces:
Runtime error
Runtime error
File size: 6,375 Bytes
3381d4a b4cbbe2 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 3381d4a ed343f7 b4cbbe2 ed343f7 a3d265e ed343f7 b4cbbe2 3381d4a b4cbbe2 ed343f7 3381d4a b4cbbe2 3381d4a b4cbbe2 3381d4a ed343f7 0e0471b ed343f7 f2021d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
# # from fastapi import FastAPI
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
# # import librosa
# # import uvicorn
# # app = FastAPI()
# # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
# # model.config.forced_decoder_ids = None
# # audio_file_path = "output.mp3"
# # audio_data, _ = librosa.load(audio_file_path, sr=16000)
# # @app.get("/")
# # def transcribe_audio():
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
# # predicted_ids = model.generate(input_features)
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
# # return {"transcription": transcription[0]}
# # if __name__ == "__main__":
# # import uvicorn
# # uvicorn.run(app, host="0.0.0.0", port=8000)
# # if __name__=='__main__':
# # uvicorn.run('main:app', reload=True)
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
# #curl -X GET "http://localhost:8000/?text=I%20like%20Apples"
# #http://localhost:8000/?text=I%20like%20Apples
# # from fastapi import FastAPI
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
# # import librosa
# # import uvicorn
# # app = FastAPI()
# # # Load model and processor
# # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
# # model.config.forced_decoder_ids = None
# # # Path to your audio file
# # audio_file_path = "/home/pranjal/Downloads/output.mp3"
# # # Read the audio file
# # audio_data, _ = librosa.load(audio_file_path, sr=16000)
# # @app.get("/")
# # def transcribe_audio():
# # # Process the audio data using the Whisper processor
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
# # # Generate transcription
# # predicted_ids = model.generate(input_features)
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
# # return {"transcription": transcription[0]}
# # if __name__ == "__main__":
# # import uvicorn
# # uvicorn.run(app, host="0.0.0.0", port=8000)
# # if __name__=='__app__':
# # uvicorn.run('main:app', reload=True)
# from fastapi import FastAPI, UploadFile, File
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
# import librosa
# from fastapi.responses import HTMLResponse
# import uvicorn
# import io
# app = FastAPI()
# # Load model and processor
# processor = WhisperProcessor.from_pretrained("openai/whisper-small")
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
# model.config.forced_decoder_ids = None
# @app.get("/")
# def read_root():
# html_form = """
# <html>
# <body>
# <h2>ASR Transcription</h2>
# <form action="/transcribe" method="post" enctype="multipart/form-data">
# <label for="audio_file">Upload an audio file (MP3 or WAV):</label>
# <input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br>
# <input type="submit" value="Transcribe">
# </form>
# </body>
# </html>
# """
# return HTMLResponse(content=html_form, status_code=200)
# @app.post("/transcribe")
# async def transcribe_audio(audio_file: UploadFile):
# try:
# # Read the uploaded audio file
# audio_data = await audio_file.read()
# # Process the audio data using the Whisper processor
# audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
# # Generate transcription
# predicted_ids = model.generate(input_features)
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
# return {"transcription": transcription[0]}
# except Exception as e:
# return {"error": str(e)}
# if __name__ == "__app__":
# uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload
from fastapi import FastAPI, UploadFile, File
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import librosa
from fastapi.responses import HTMLResponse
import uvicorn
import io
app = FastAPI()
# # Load model and processor
# processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
# model.config.forced_decoder_ids = None
import whisper
model = whisper.load_model("small")
@app.get("/")
def read_root():
html_form = """
<html>
<body>
<h2>ASR Transcription</h2>
<form action="/transcribe" method="post" enctype="multipart/form-data">
<label for="audio_file">Upload an audio file (MP3 or WAV):</label>
<input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br>
<input type="submit" value="Transcribe">
</form>
</body>
</html>
"""
return HTMLResponse(content=html_form, status_code=200)
@app.post("/transcribe")
async def transcribe_audio(audio_file: UploadFile):
try:
# Read the uploaded audio file
audio_data = await audio_file.read()
# Process the audio data using the Whisper processor
# audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
# # Generate transcription
# predicted_ids = model.generate(input_features)
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
result = model.transcribe("/home/pranjal/Downloads/rt.mp3")
return {"transcription": result['text']}
except Exception as e:
return {"error": str(e)}
# if __name__ == "__app__":
# uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|