File size: 6,375 Bytes
3381d4a
b4cbbe2
 
3381d4a
 
 
 
ed343f7
3381d4a
ed343f7
3381d4a
 
 
ed343f7
3381d4a
ed343f7
3381d4a
ed343f7
3381d4a
 
 
ed343f7
3381d4a
 
ed343f7
3381d4a
ed343f7
 
3381d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
ed343f7
 
 
 
 
 
 
 
3381d4a
 
 
 
ed343f7
3381d4a
ed343f7
3381d4a
 
 
 
ed343f7
3381d4a
 
ed343f7
3381d4a
 
ed343f7
3381d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed343f7
3381d4a
 
 
 
 
ed343f7
 
3381d4a
ed343f7
3381d4a
ed343f7
 
 
 
 
 
 
 
 
3381d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed343f7
3381d4a
ed343f7
 
 
 
 
 
 
3381d4a
 
 
 
 
ed343f7
 
 
 
 
 
3381d4a
ed343f7
 
 
b4cbbe2
 
ed343f7
a3d265e
ed343f7
b4cbbe2
 
 
3381d4a
 
 
 
 
 
 
 
b4cbbe2
 
ed343f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3381d4a
 
b4cbbe2
3381d4a
 
 
 
b4cbbe2
3381d4a
ed343f7
 
0e0471b
ed343f7
 
f2021d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload


# # from fastapi import FastAPI
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
# # import librosa
# # import uvicorn

# # app = FastAPI()

# # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
# # model.config.forced_decoder_ids = None

# # audio_file_path = "output.mp3"

# # audio_data, _ = librosa.load(audio_file_path, sr=16000)

# # @app.get("/")
# # def transcribe_audio():
# #         input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
        
# #         predicted_ids = model.generate(input_features)
# #         transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
        
# #         return {"transcription": transcription[0]}


# # if __name__ == "__main__":
# #     import uvicorn
# #     uvicorn.run(app, host="0.0.0.0", port=8000)


# # if __name__=='__main__':
# #     uvicorn.run('main:app', reload=True)




# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
# #curl -X GET "http://localhost:8000/?text=I%20like%20Apples"
# #http://localhost:8000/?text=I%20like%20Apples








# # from fastapi import FastAPI
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
# # import librosa
# # import uvicorn

# # app = FastAPI()

# # # Load model and processor
# # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
# # model.config.forced_decoder_ids = None

# # # Path to your audio file
# # audio_file_path = "/home/pranjal/Downloads/output.mp3"

# # # Read the audio file
# # audio_data, _ = librosa.load(audio_file_path, sr=16000)

# # @app.get("/")
# # def transcribe_audio():
# #         # Process the audio data using the Whisper processor
# #         input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
        
# #         # Generate transcription
# #         predicted_ids = model.generate(input_features)
# #         transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
        
# #         return {"transcription": transcription[0]}

# # if __name__ == "__main__":
# #     import uvicorn
# #     uvicorn.run(app, host="0.0.0.0", port=8000)


# # if __name__=='__app__':
# #     uvicorn.run('main:app', reload=True)





# from fastapi import FastAPI, UploadFile, File
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
# import librosa
# from fastapi.responses import HTMLResponse
# import uvicorn
# import io

# app = FastAPI()

# # Load model and processor
# processor = WhisperProcessor.from_pretrained("openai/whisper-small")
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
# model.config.forced_decoder_ids = None

# @app.get("/")
# def read_root():
#     html_form = """
#     <html>
#         <body>
#             <h2>ASR Transcription</h2>
#             <form action="/transcribe" method="post" enctype="multipart/form-data">
#                 <label for="audio_file">Upload an audio file (MP3 or WAV):</label>
#                 <input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br>
#                 <input type="submit" value="Transcribe">
#             </form>
#         </body>
#     </html>
#     """
#     return HTMLResponse(content=html_form, status_code=200)

# @app.post("/transcribe")
# async def transcribe_audio(audio_file: UploadFile):
#     try:
#         # Read the uploaded audio file
#         audio_data = await audio_file.read()
        
#         # Process the audio data using the Whisper processor
#         audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
#         input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
        
#         # Generate transcription
#         predicted_ids = model.generate(input_features)
#         transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
        
#         return {"transcription": transcription[0]}
#     except Exception as e:
#         return {"error": str(e)}

# if __name__ == "__app__":
#     uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)






#uvicorn app:app --host 0.0.0.0 --port 8000 --reload


from fastapi import FastAPI, UploadFile, File
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import librosa
from fastapi.responses import HTMLResponse
import uvicorn
import io

app = FastAPI()

# # Load model and processor
# processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
# model.config.forced_decoder_ids = None

import whisper
model = whisper.load_model("small")


@app.get("/")
def read_root():
    html_form = """
    <html>
        <body>
            <h2>ASR Transcription</h2>
            <form action="/transcribe" method="post" enctype="multipart/form-data">
                <label for="audio_file">Upload an audio file (MP3 or WAV):</label>
                <input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br>
                <input type="submit" value="Transcribe">
            </form>
        </body>
    </html>
    """
    return HTMLResponse(content=html_form, status_code=200)

@app.post("/transcribe")
async def transcribe_audio(audio_file: UploadFile):
    try:
        # Read the uploaded audio file
        audio_data = await audio_file.read()
        
        # Process the audio data using the Whisper processor
        # audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
        # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
        
        # # Generate transcription
        # predicted_ids = model.generate(input_features)
        # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
        result = model.transcribe("/home/pranjal/Downloads/rt.mp3")
        
        return {"transcription": result['text']}
    except Exception as e:
        return {"error": str(e)}

# if __name__ == "__app__":
#     uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)