import json from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.core.agent import ReActAgent from llama_index.llms.ollama import Ollama from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.ollama import Ollama from llama_index.core import Settings from llama_index.llms.groq import Groq import os documents = SimpleDirectoryReader("data").load_data() # bge-base embedding model Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") # ollama Settings.llm =Groq(model="mixtral-8x7b-32768", api_key="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") index = VectorStoreIndex.from_documents( documents, ) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(response)